Nothing Special   »   [go: up one dir, main page]

Skip to main content

Constrained Total Variation Minimization and Application in Computerized Tomography

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

We present a simple framework for solving different ill-posed inverse problems in image processing by means of constrained total variation minimizations. We argue that drawbacks commonly attributed to total variation algorithms (slowness and incomplete fit to the image model) can be easily bypassed by performing only a few number of iterations in our optimization process. We illustrate this approach in the context of computerized tomography, that comes down to inverse a Radon transform obtained by illuminating an object by straight and parallel beams of x-rays. This problem is ill-posed because only a finite number of line integrals can be measured, resulting in an incomplete coverage of the frequency plane and requiring, for a direct Fourier reconstruction, frequencies interpolation from a polar to a Cartesian grid. We introduce a new method of interpolation based on a total variation minimization constrained by the knowledge of frequency coefficients in the polar grid, subject to a Lipschitz regularity assumption. The experiments show that our algorithm is able to avoid Gibbs and noise oscillations associated to the direct Fourier method, and that it outperforms classical reconstruction methods such as filtered backprojection and Rudin-Osher-Fatemi total variation restoration, in terms of both PSNR and visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  2. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Acar, R., Vogel, C.: Analysis of total variation penalty methods for ill-posed problems. Inverse Problems 10, 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Li, Y., Santosa, F.: A computational algorithm for minimizing total variation in image restoration. IEEE Trans. on Image Proc. 5, 987–995 (1996)

    Article  Google Scholar 

  5. Vogel, C., Oman, M.: Iterative method for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dobson, D.C., Vogel, C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34, 1779–1791 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Vogel, C., Oman, M.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. on Image Proc. 7, 813–824 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, T., Golub, G., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dibos, F., Koepfler, G.: Global total variation minimization. SIAM J. Numer. Anal. 37, 646–664 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Darbon, J., Sigelle, M.: Exact optimization of discrete constrained total variation minimization problems. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 548–557. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Combettes, P., Luo, J.: An adaptive level set method for nondifferentiable constrained image recovery. IEEE Trans. on Image Proc. 11, 1295–1304 (2002)

    Article  MathSciNet  Google Scholar 

  12. Durand, S., Froment, J.: Reconstruction of wavelet coefficients using total variation minimization. SIAM J. Sci. Comput. 24, 1754–1767 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  14. Alter, F., Durand, S., Froment, J.: Deblocking DCT-based compressed images with weighted total variation. In: Proc. of ICASSP 2004, Montréal, vol. 3 (2004)

    Google Scholar 

  15. Coifman, R., Sowa, A.: Combining the calculus of variations and wavelets for image enhancement. Applied and Comput. Harmonic Ana. 9, 1–18 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chan, T.F., Zhou, H.: Total variation improved wavelet thresholding in image compression. In: Proc. of ICIP 2000 (2000)

    Google Scholar 

  17. Malgouyres, F.: Combining total variation and wavelet packet approaches for image deblurring. In: Proc. of IEEE work. on VLSM 2001, Vancouver, Canada, pp. 57–64 (2001)

    Google Scholar 

  18. Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. on Image Proc. 11, 1450–1456 (2002)

    Article  MathSciNet  Google Scholar 

  19. Aliney, S.: A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. on Signal Proc. 45, 913–917 (1997)

    Article  Google Scholar 

  20. Nikolova, M.: Minimization of cost-functions with non-smooth data-fidelity terms to clean impulsive noise. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 391–406. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Nikolova, M.: Minimization of cost-functions involving nonsmooth data-fidelity terms. application to the processing of outliers. SIAM J. Numer. Anal. 40, 965–994 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gousseau, Y., Morel, J.M.: Are natural images of bounded variation? SIAM J. Math. Anal. 33, 634–648 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations. In: The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures, vol. 22. American Mathematical Society, Providence (2001)

    Google Scholar 

  24. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H − 1 norm. SIAM Multiscale Model. Simul. 1, 349–370 (2003)

    Article  MATH  Google Scholar 

  25. Vese, L., Osher, S.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vis. 20, 7–18 (2004)

    Article  MathSciNet  Google Scholar 

  26. Aujol, J., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22 (2005)

    Google Scholar 

  27. Aujol, J., Chambolle, A.: Duals norms and image decomposition models. Int. Jour. of Computer Vision 63, 85–104 (2005)

    Article  Google Scholar 

  28. Alter, F., Durand, S., Froment, J.: Adapted total variation for artifact free decompression of JPEG images. J. Math. Imaging Vis. 23 (2005)

    Google Scholar 

  29. Shepp, L., Logan, B.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21, 21–43 (1974)

    Article  Google Scholar 

  30. Guichard, F., Malgouyres, F.: Total variation based interpolation. In: Proc. of EUSIPCO 1998, vol. 3, pp. 1741–1744 (1998)

    Google Scholar 

  31. Polyak, B.: Introduction to Optimization. Optimization Software (1987)

    Google Scholar 

  32. Combettes, P.L.: Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections. IEEE Trans. on Image Proc. 6, 493–506 (1997)

    Article  Google Scholar 

  33. Durand, S., Malgouyres, F., Rougé, B.: Image deblurring, spectrum interpolation and application to satellite imaging. ESAIM: COCV Control, Opt. and Cal. of Var. 5, 445–475 (2000)

    Article  MATH  Google Scholar 

  34. Moisan, L.: Extrapolation de spectre et variation totale pondérée. In: Proc. of Gretsi 2001, Toulouse, France (2001)

    Google Scholar 

  35. Durand, S., Froment, J.: Artifact free signal denoising with wavelets. In: Proc. of ICASSP 2001, Salt Lake City, vol. 6 (2001)

    Google Scholar 

  36. Donoho, D., Johnstone, I.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wallace, G.: The JPEG still picture compression standard. Communications of the ACM 34, 31–44 (1991)

    Article  Google Scholar 

  38. Kak, A., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  39. Gottlieb, D., Gustafsson, B., Forssén, P.: On the direct Fourier method for computer tomography. IEEE Trans. Medical Imaging 19, 223–232 (2000)

    Article  Google Scholar 

  40. Waldén, J.: Analysis of the direct Fourier method for computer tomography. IEEE Trans. Medical Imaging 19, 211–222 (2000)

    Article  Google Scholar 

  41. Averbuch, A., Coifman, R., Donoho, D., Israeli, M., Waldén, J.: Fast slant stack: A notion of radon transform for data in a cartesian grid which is rapidly computable, algebraically exact, geometrically faithful and invertible. SIAM J. Sci. Comput. (to appear)

    Google Scholar 

  42. Bronstein, M., Bronstein, A., Zibulevsky, M., Azhari, H.: Reconstruction in ultrasound diffraction tomography using non-uniform FFT. IEEE Trans. Medical Imaging 21, 1395–1401 (2002)

    Article  Google Scholar 

  43. Fessler, J., Sutton, B.: Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. on Signal Proc. 51, 560–574 (2003)

    Article  MathSciNet  Google Scholar 

  44. Jonsson, E., Huang, S., Chan, T.: Total variation regularization in positron emission tomography. UCLA CAM Report 98-48, University of California, Los Angeles, CA (1998), http://www.math.ucla.edu/~chan/papers.html

  45. Candès, E., Guo, F.: New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction. Signal Processing 82, 1519–1543 (2002)

    Article  MATH  Google Scholar 

  46. Capricelli, T.D., Combettes, P.L.: Parallel block-iterative reconstruction algorithms for binary tomography. In: Special issue of Electronic Notes in Discrete Mathematics: Workshop on discrete tomography and its applications, June 13-15, Elsevier, New York City (2005) (to appear)

    Google Scholar 

  47. Lee, N.Y., Lucier, B.J.: Wavelet methods for inverting the radon transform with noisy data. IEEE Trans. on Image Proc. 10, 79–94 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  48. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22, 503–516 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  49. Dobson, D., Santosa, F.: Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56, 1181–1199 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, XQ., Froment, J. (2005). Constrained Total Variation Minimization and Application in Computerized Tomography. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_30

Download citation

  • DOI: https://doi.org/10.1007/11585978_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics