Nothing Special   »   [go: up one dir, main page]

Skip to main content

Scaling Down Candidate Sets Based on the Temporal Feature of Items for Improved Hybrid Recommendations

  • Conference paper
Intelligent Techniques for Web Personalization (ITWP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3169))

Included in the following conference series:

Abstract

The intensive information overload incurred by the growing interest in the Internet as a medium to conduct business has stimulated the adoption of recommender systems. However, scalability still remains an obstacle to applying recommender mechanism for large-scale web-based systems where thousands of items and transactions are readily available. To deal with this issue, data mining techniques have been applied to reduce the dimensions of candidate sets. In this chapter in the context of movie recommendations, we study a different kind of technique to scale down candidate sets by considering the temporal feature of items. In particular, we argue that movies’ production year can be regarded as a “temporal context” to which the value (thus the rating) of the movie can be attached; and thus might significantly affect target users’ future preferences. We call it the temporal effects of the items on the performance of the recommender systems. We perform some experiments on the MovieLens data sets. The results show that the temporal feature of items can not only be exploited to scale down the candidate sets, but also increase the accuracy of the recommender systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adomavicius, G., Tuzhilin, A.: Extending recommender systems: a multidimensional approach. Workship on Intelligent Techniques for Web Personalization. In: 17th International Joint Conference on Artificial Intelligence, Seattle, Washington (2001)

    Google Scholar 

  2. Balabanović, M., Shoham, Y.: Fab: content-based collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  3. Basu, C., Hirsh, H., Cohen, W.W.: Recommendation as classification: using social and content-based information in recommendation. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI/IAAI 1998), Madison, pp. 714–720 (1998)

    Google Scholar 

  4. Billsus, D., Pazzani, M.: A hybrid user model for news story classification. In: Proceedings of the 7th International Conference on User Modeling (UM 1999), pp. 99–108 (1999)

    Google Scholar 

  5. Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998) (1998)

    Google Scholar 

  6. Good, N., Schafer, J.B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., Riedl, J.: Combining collaborative filtering with personal agents for better recommendations. In: Proceedings of the 16th National Conference on Artificial Intelligence (AAAI 1999), pp. 439–446 (1999)

    Google Scholar 

  7. Grant, S., McCalla, G.I.: A hybrid approach to making recommendations and its application to the movie domain. In: Stroulia, E., Matwin, S. (eds.) Canadian AI 2001. LNCS (LNAI), vol. 2056, pp. 257–266. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1999), Berkeley, USA, pp. 230–237 (1999)

    Google Scholar 

  9. Herlocker, J., Konstan, J., Loren, G., Terveen, L.G., John Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)

    Article  Google Scholar 

  10. Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and evaluating choices in a virtual community of use. In: Proceedings of ACM Conference on Human Factors in computing Systems (ACM CSCW 1995), pp. 194–201 (1995)

    Google Scholar 

  11. Jameson, A., Konstan, J., Riedl, J.: AI techniques for personalized recommendation. Tutorial notes. In: 18th National Conference on Artificial Intelligence (AAAI 2002), Edmonton, Canada (2002)

    Google Scholar 

  12. Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: a tour guide for the world wide web. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 770–775 (1997)

    Google Scholar 

  13. Konstan, J., Miller, B.N., Maltz, D., Herlocker, J., Gordon, L.R., Riedl, J.: GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM 40(3), 77–87 (1997)

    Article  Google Scholar 

  14. McNee, S.M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S.K., Rashid, A.M., Konstan, J., Riedl, J.: On the recommending of citations for research papers. In: Proceedings of ACM Conference on Computer Supported Collaborative Work (CSCW 2002), ACM, New York (2002)

    Google Scholar 

  15. Melville, P., Mooney, R., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2002), Edmonton, Canada, pp. 187–192 (2002)

    Google Scholar 

  16. Paepcke, A., Garcia-Molina, H., Rodriguez-Mula, G., Cho, J.: Beyond document similarity: understanding value-based search and browsing technologies. SIGMOD Records 29(1), 80–92 (2000)

    Article  Google Scholar 

  17. Popescul, A., Flake, G.W., Lawrence, S., Ungar, L.H., Giles, C.L.: Clustering and identifying temporal trends in document databases. In: Proceedings of the IEEE Advances in Digital Libraries (IEEE ADL 2000), Washington, DC, May 2000, pp. 173–182 (2000)

    Google Scholar 

  18. Resnick, P., Iacouvou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of Netnews. In: Proceedings of ACM Computer-Supported Collaborative Work (CSCW 1994), N.C., pp. 175–186. Chapel Hill, Addison-Wesley (1994)

    Google Scholar 

  19. Sarwar, B., Konstan, J., Borchers, A., Herlocker, J., Miller, B., Riedl, J.: Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system. In: Proceedings of ACM Conference on Computer Supported Collaborative Work (ACM CSCW 1998) (November 1998)

    Google Scholar 

  20. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of ACM Conference on Electronic Commerce (ACM EC 2000), Minneapolis, pp. 158–167 (2000)

    Google Scholar 

  21. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application dimensionality reduction in recommender system—a case study. In: WebKDD Web Mining for E-Commerce Workshop, ACM International Conference on Knowledge Discovery and Data Mining (KDD 2000) (2000)

    Google Scholar 

  22. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommender algorithms. In: Proceedings of ACM International World Wide Web Conference (WWW10), Hong Kong (2001)

    Google Scholar 

  23. Schein, A., Popescul, A., Ungar, L.H., Pennock, D.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2002), Tampere, Finland (August 2002)

    Google Scholar 

  24. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating ‘word of mouth’. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (ACM CHI 1995), Denver, pp. 210–217 (1995)

    Google Scholar 

  25. Sina, R., Swearinggen, K.: The role of transparency in recommender systems. In: CHI 2002 Conference Companion (2002)

    Google Scholar 

  26. Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 240, 1285–1289 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ungar, L.H., Foster, D.P.: Clustering methods for collaborative filtering. In: Workshop on Recommender Systems. 15th national Conference on Artificial Intelligence (AAAI 1998) (1998)

    Google Scholar 

  28. Yang, H., Parthasarathy, S., Reddy, S.: On the use of constrained association rules for web mining. In: Zaïane, O.R., Srivastava, J., Spiliopoulou, M., Masand, B. (eds.) WebKDD 2003. LNCS (LNAI), vol. 2703, pp. 100–118. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  29. Yu, K., Xu, X., Ester, M., Kriegel, H.-P.: Selecting relevant instances for efficient and accurate collaborative filtering. In: Proceedings of ACM International Conference on Information and Knowledge Management (CIKM 2001), pp. 239–246 (2001)

    Google Scholar 

  30. Yu, P.: Data mining and personalization technologies. In: Proceedings of the International Conference on Database Systems for Advanced Applications, Taiwan (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tang, T.Y., Winoto, P., Chan, K.C.C. (2005). Scaling Down Candidate Sets Based on the Temporal Feature of Items for Improved Hybrid Recommendations. In: Mobasher, B., Anand, S.S. (eds) Intelligent Techniques for Web Personalization. ITWP 2003. Lecture Notes in Computer Science(), vol 3169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11577935_9

Download citation

  • DOI: https://doi.org/10.1007/11577935_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29846-5

  • Online ISBN: 978-3-540-31655-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics