Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Abstractions to Facilitate Management of Large ORM Models and Ontologies

  • Conference paper
On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops (OTM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3762))

Abstract

Due to ever larger ORM models and ORM-represented ontologies, information management and its GUI representation is even more important. One useful mechanism is abstraction, which has received some attention in conceptual modelling and implementation, as well as its foundational characteristics. Extant heuristics for ORM abstractions are examined and enriched with several foundational aspects of abstraction. These improvements are applicable to a wider range of types of representations, including conceptual models and ontologies, thereby not only alleviating the Database Comprehension Problem, but also facilitate conceptual model and ontology browsing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bittner, T., Smith, B.: A Theory of Granular Partitions. In: Duckham, M., Goodchild, M.F., Worboys, M.F. (eds.) Foundations of Geographic Information Science, pp. 117–151. Taylor & Francis Books, London (2003)

    Chapter  Google Scholar 

  2. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: Contextualizing Ontologies. Journal of Web Semantics 1(4), 24 (2004)

    Google Scholar 

  3. Campbell, L.J., Halpin, T.A., Proper, H.A.: Conceptual Schemas with Abstractions: Making flat conceptual schemas more comprehensible. Data & Knowledge Engineering 20(1), 39–85 (1996)

    Article  MATH  Google Scholar 

  4. Degtyarenko, K., Contrino, S.: COMe: the ontology of bioinorganic proteins. BMC Structural Biology 4, 3 (2004)

    Article  Google Scholar 

  5. Fonseca, F., Egenhofer, M., Davis, C., Camara, G.: Semantic Granularity in Ontology-Driven Geographic Information Systems. Annals of Mathematics and Artificial Intelligence 36(1-2), 121–151 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ghidini, C., Giunchiglia, F.: A semantics for abstraction. Technical Report DIT-03-082, University of Trento, Italy (2003)

    Google Scholar 

  7. Halpin, T.: Information Modeling and Relational Databases. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  8. Hanahan, D., Weinberg, R.A.: The Hallmarks of Cancer. Cell 100, 57–70 (2000)

    Article  Google Scholar 

  9. Hobbs, J.R.: Granularity. In: International Joint Conference on Artificial Intelligence (IJCAI 1985), pp. 432–435 (1985)

    Google Scholar 

  10. Hunter, P.J., Borg, T.: Integration from Proteins to Organs: The Physiome Project. Nature 4(3), 237–243 (2003)

    Google Scholar 

  11. Jaeschke, P., Oberweis, A., Stucky, W.: Extending ER Model Clustering by relationship clustering. In: 12th International Conference on Entity Relationship Approach, Arlington, Texas (1993)

    Google Scholar 

  12. Jarrar, M., Demy, J., Meersman, R.: On Using Conceptual Data Modeling for Ontology Engineering. Journal on Data Semantics Special issue on Best papers from the ER/ODBASE/COOPIS 2002 Conferences 1(1), 185–207 (2003)

    Google Scholar 

  13. Kiriyama, T., Tomiyama, T.: Reasoning about Models across Multiple Ontologies. In: International Qualitative Reasoning Workshop (1993)

    Google Scholar 

  14. Keet, C.M.: Factors affecting ontology development in ecology. In: Ludäscher, B., Raschid, L. (eds.) DILS 2005. LNCS (LNBI), vol. 3615, pp. 46–62. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Keet, C.M., Kumar, A.: Applying partitions to infectious diseases. In: XIX International Congress of the European Federation for Medical Informatics, Geneva, Switzerland (2005)

    Google Scholar 

  16. Kumar, A., Smith, B., Novotny, D.D.: Biomedical Informatics and Granularity. Comparative and Functional Genomics 5(6-7), 501–508 (2005)

    Article  Google Scholar 

  17. Kumar, A., Yip, L., Smith, B., Grenon, P.: Bridging the Gap between Medical and Bioinformatics Using Formal Ontological Principles. Computers in Biology and Medicine (In press)

    Google Scholar 

  18. Lind, M.: Making sense of the abstraction heirarchy. In: Cognitive Science Approaches to Process Control (CSAPC 1999), Villeneuve d’Ascq, France (September 21-24 1999)

    Google Scholar 

  19. Mani, I.: A theory of granularity and its application to problems of polysemy and underspecification of meaning. In: Cohn, A.G., Schubert, L.K., Shapiro, S.C. (eds.) Principles of Knowledge Representation and Reasoning (KR 1998), pp. 245–255. Morgan Kaufmann, San Mateo (1998)

    Google Scholar 

  20. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology Library. WonderWeb Deliverable D18 (v1.0) (2003), http://wonderweb.semanticweb.org

  21. Pandurang Nayak, P., Levy, A.Y.: A semantic theory of abstractions. In: Mellish, C. (ed.) Proceedings of the International Joint Conference on Artificial Intelligence, pp. 196–203. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  22. Sontag, E.D.: Some new directions in control theory inspired by systems biology. Systems biology 1(1), 9–18 (2004)

    Article  Google Scholar 

  23. Tett, P., Wilson, H.: From biogeochemical to ecological models of marine microplankton. Journal of Marine Systems 25, 431–446 (2000)

    Article  Google Scholar 

  24. Yu, X., Lau, E., Vicente, K.J., Carter, M.W.: Toward theory-driven, quantitative performance measurement in ergonomics science: the abstraction hierarchy as a framework for data analysis. Theoretical Issues in Ergonomics Science 3(2), 124–142 (2002)

    Article  Google Scholar 

  25. Agricultural Ontology Services, http://www.fao.org/agris/aos

  26. Bad Bug Book, http://www.cfsan.fda.gov/~mow/intro.html

  27. Foundational Model of Anatomy (2003), http://sig.biostr.washington.edu/projects/fm/index.html

  28. Gene Ontology Consortium, http://www.geneontology.org

  29. GO-slim, http://www.geneontology.org/GO.slims.shtml

  30. iCOM, http://www.inf.unibz.it/~franconi/icom

  31. ISEE Systems, http://www.iseesystems.com

  32. MetaCyc & BioCyc, http://BioCyc.org

  33. Open Biological Ontologies, http://obo.sourceforge.net

  34. Snomed CT, http://www.snomed.org/snomedct/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keet, C.M. (2005). Using Abstractions to Facilitate Management of Large ORM Models and Ontologies. In: Meersman, R., Tari, Z., Herrero, P. (eds) On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops. OTM 2005. Lecture Notes in Computer Science, vol 3762. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11575863_80

Download citation

  • DOI: https://doi.org/10.1007/11575863_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29739-0

  • Online ISBN: 978-3-540-32132-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics