Nothing Special   »   [go: up one dir, main page]

Skip to main content

Successive Linear Programs for Computing All Integral Points in a Minkowski Sum

  • Conference paper
Advances in Informatics (PCI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3746))

Included in the following conference series:

  • 2075 Accesses

Abstract

The computation of all integral points in Minkowski (or vector) sums of convex lattice polytopes of arbitrary dimension appears as a subproblem in algebraic variable elimination, parallel compiler code optimization, polyhedral combinatorics and multivariate polynomial multiplication. We use an existing approach that avoids the costly construction of the Minkowski sum by an incremental process of solving Linear Programming (LP) problems. Our main contribution is to exploit the similarities between LP problems in the tree of LP instances, using duality theory and the two-phase simplex algorithm. Our public domain implementation improves substantially upon the performance of the above mentioned approach and is faster than porta on certain input families; besides, the latter requires a description of the Minkowski sum which has high complexity. Memory consumption limits commercial or free software packages implementing multivariate polynomial multiplication, whereas ours can solve all examined data, namely of dimension up to 9, using less than 2.7 MB (before actually outputting the points) for instances yielding more than 3 million points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amarasinghe, S.P.: Parallelizing Compiler Techniques Based on Linear Inequalities. Ph.D. thesis, Computer Systems Lab., Stanford University (1997)

    Google Scholar 

  2. Christof, T., Loebel, A., Stoer, M.: PORTA 1.3.2. Univ. of Heidelberg and ZIB Berlin PORTA (1999), http://www.iwr.uni-heidelberg.de/groups/comopt/software/

  3. Christof, T., Reinelt, G.: Combinatorial Optimization and Small Polytopes. Top (Spanish Statistical and Operations Research Society) 4, 1–64 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Chvátal, V.: Linear Programming. W.H. Freeman & Co, New York (1983)

    MATH  Google Scholar 

  5. Clauss, P.: Counting Solutions to Linear and Nonlinear Constraints Through Ehrart Polynomials: Applications to Analyze and Transform Scientific Programs. In: Intern. Conf. Supercomp, pp. 278–285 (1996)

    Google Scholar 

  6. The Computational Algebra Group. Magma 2.8. University of Sydney, Australia, http://magma.maths.usyd.edu.au/magma/

  7. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185. Springer, New York (1998)

    MATH  Google Scholar 

  8. Dickenstein, A., Emiris, I.Z.: Multihomogeneous Resultant Formulae by Means of Complexes. J. Symb. Computation 36(3-4), 317–342 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Emiris, I.Z., Zervoudakis, K.: Successive Linear Programs for Computing all Integral Points in a Minkowski Sum, http://www.di.uoa.gr/~quasi/EmiZer.pdf

  10. Emiris, I.Z.: Enumerating a subset of the integer points inside a Minkowski sum. Comp. Geom.: Theory & Appl., Spec. Issue 22(1–3), 143–166 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Emiris, I.Z., Canny, J.F.: Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symbolic Computation 20(2), 117–149 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston (1994)

    Google Scholar 

  13. GNU Project, SciFace Software GmbH. GLPK 3.2.3, GNU LInear Programming Kit, http://www.gnu.org/software/glpk

  14. Gritzmann, P., Klee, V.: Computational convexity. In: Goodman, J.E., O’Rourke, J. (eds.) The Handbook of Discrete and Computational Geometry, pp. 491–516. CRC Press, Boca Raton (1997)

    Google Scholar 

  15. Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: Computational complexity and applications to Groebner bases. SIAM J. Disc. Math. 6(2), 246–269 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Konrad-Zuse-Zentrum für Informationstechnik, Berlin. SoPlex 1.2.1, Sequential Object-oriented simPLEX class library, http://www.zib.de/Optimization/Software/Soplex

  17. Lewis, R.: Fermat, A Computer Algebra System for Polynomial and Matrix Computation. Fordham University, New York, http://www.bway.net/~lewis

  18. Mourrain, B.: Symbolic Numeric Applications, INRIA Sophia-Antipolis (2002), http://www-sop.inria.fr/galaad/synaps/

  19. ILOG S.A. Planner 3.3, Reference Manual (2001)

    Google Scholar 

  20. PolyLib, A library of polyhedral functions (2002), http://icps.u-strasbg.fr/polylibs

  21. Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons, Chichester (1982)

    Google Scholar 

  22. Sturmfels, B., Zelevinsky, A.: Multigraded Resultants of Sylvester Type. J. of Algebra 163(1), 115–127 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Whaley, R.C., Patitet, A., Dongarra, J.J.: Automated empirical optimization of software and the ATLAS project, http://netlib.uow.edu.au/atlas/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emiris, I.Z., Zervoudakis, K. (2005). Successive Linear Programs for Computing All Integral Points in a Minkowski Sum. In: Bozanis, P., Houstis, E.N. (eds) Advances in Informatics. PCI 2005. Lecture Notes in Computer Science, vol 3746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11573036_9

Download citation

  • DOI: https://doi.org/10.1007/11573036_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29673-7

  • Online ISBN: 978-3-540-32091-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics