Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multiagent Elite Search Strategy for Combinatorial Optimization Problems

  • Conference paper
Computer and Information Sciences - ISCIS 2005 (ISCIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3733))

Included in the following conference series:

Abstract

Ant Colony System is a new meta heuristics algorithms to solve hard combinatorial optimization problems. It is a population based approach that uses exploitation of positive feedback as well as greedy search. In this paper, we propose a multi colony interaction ant model that achieves positive·negative interaction through an elite strategy divided by intensification strategy and diversification strategy to improve the performance of original ACS. Positive interaction makes agents belonging to other colony to select the high frequency of the visit of edge, and negative interaction makes to escape the selection of relevant edge. And, we compares with original ACS method for the performance. This multi colony interaction ant model can be applied effectively in occasion that problem regions are big and complex, parallel processing is available, and can improve the performance ACS model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Colorni, A., Dorigo, M., Maniezzo, V.: An investigation of some properties of an ant algorithm. In: Manner, R., Manderick, B. (eds.) Proceediings of the Parallel Parallel Problem Solving from Nature Conference(PPSn 1992), pp. 509–520. Elsevier Publishing, Amsterdam (1992)

    Google Scholar 

  2. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Varela, F., Bourgine, P. (eds.) Proceedings of ECAL 1991 - European Conference of Artificial Life, Paris, France, pp. 134–144. Elsevier Publishing, Amsterdam (1991)

    Google Scholar 

  3. Gambardella, L.M., Dorigo, M.: Ant Colony System: A Cooperative Learning approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1) (1997)

    Google Scholar 

  4. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperation agents. IEEE Transactions of Systems, Man, and Cybernetics-Part B 26(2), 29–41 (1996)

    Article  Google Scholar 

  5. Dorigo, M., Gambardella, L.M.: Ant Colonies for the Traveling Salesman Problem. BioSystems, 73–81 (1997)

    Google Scholar 

  6. Middendorf, M., Reischle, F., Schmeck, H.: Information Exchange in Multi Colony Ant Algorithms. In: Rolim, J.D.P. (ed.) IPDPS-WS 2000. LNCS, vol. 1800, pp. 645–652. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Talbi, E.G., Roux, O., Fonlupt, C., Robillard, D.: Parallel ant colonies for combinatorial optimization problems. In: Rolim, J.D.P. (ed.) IPPS-WS 1999 and SPDP-WS 1999. LNCS, vol. 1586, pp. 239–247. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. de Jong, J., Wiering, M.: Multiple Ant Colony Systems for the Busstop Allocation Problem. In: BNAIC 2001: Proceedings of the Thirteenth Belgium-Netherlands Conference on Artificial In telligence, pp. 141–148 (2001)

    Google Scholar 

  9. Kawamura, H., Yamamoto, M., Suzuki, K., Ohuchi, A.: Multiple Ant Colonies Algorithm Based on Colony Level Interactions. IEICE Transactions E83-A(2), 371–379 (2000)

    Google Scholar 

  10. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, S. (2005). Multiagent Elite Search Strategy for Combinatorial Optimization Problems. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds) Computer and Information Sciences - ISCIS 2005. ISCIS 2005. Lecture Notes in Computer Science, vol 3733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569596_46

Download citation

  • DOI: https://doi.org/10.1007/11569596_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29414-6

  • Online ISBN: 978-3-540-32085-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics