Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Symbolic Signatures for Classifying Craniosynostosis Skull Deformities

  • Conference paper
Computer Vision for Biomedical Image Applications (CVBIA 2005)

Abstract

Craniosynostosis is a serious and common pediatric disease caused by the premature fusion of the sutures of the skull. Early fusion results in severe deformities in skull shape due to the restriction of bone growth perpendicular to the fused suture and compensatory growth in unfused skull plates. Calvarial (skull) abnormalities are frequently associated with severe impaired central nervous system functions due to brain abnormalities, increased intra-cranial pressure and abnormal build-up of cerebrospinal fluid. In this work, we develop a novel approach to efficiently classify skull deformities caused by metopic and sagittal synostoses using our newly introduced symbolic shape descriptors. We demonstrate the efficacy of our methodology in a series of large-scale classification experiments that compare the performance of our symbolic-signature-based approach to those of traditional numeric descriptors that are frequently used in clinical research. We also demonstrate an application of our symbolic descriptors in shape-based retrieval of skull morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statist, Soc. B 39 (1977)

    Google Scholar 

  2. Dryden, I., Mardia, K.V.: Statistical Shape Analysis. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  3. Efron, B.: The Jackknife, the Bootstrap, and Other Resampling Plans. Society for Industrial and Applied Mathematics (1982)

    Google Scholar 

  4. Fata, J.J., Turner, M.S.: The reversal exchange technique of total calvarial reconstruction for sagittal synostosis. Plast. Reconst. Surg. 107, 1637–1646 (2001)

    Article  Google Scholar 

  5. Guimaras-Ferreira, J., Gewalli, F., David, L., Olsson, R., Freide, H., Lauritzen, C.G.K.: Spring-mediated cranioplasty compared with the modified pi-plasty for sagittal synostosis. Scand. J. Plast. Surg. Hand Surg. 37, 209–215 (2003)

    Google Scholar 

  6. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison-Wesley, Reading (1992)

    Google Scholar 

  7. Hofmann, T.: Unsupervised learning by Probabilistic Latent Semantic Analysis. Machine Learning 42, 177–196 (2001)

    Article  MATH  Google Scholar 

  8. Lajeunie, E., Le Merrer, M., Marchac, C., Renier, D.: Genetic study of scaphocepaly. Am. J. Med. Gene. 62, 282–285 (1996)

    Article  Google Scholar 

  9. Lale, S.R., Richtsmeier, J.T.: An invariant approach to statistical analysis of shape. Chapman and Hall/CRC (2001)

    Google Scholar 

  10. Lin, H.J., Ruiz-Correa, S., Shapiro, L.G., Hing, A.V., Cunningham, M.L., Speltz, M.L., Sze, R.W.: Symbolic shape descriptors for classifying craniosynostosis deformations from skull imaging. In: Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society (2005) (in press)

    Google Scholar 

  11. Lynch, M., Walsh, B.: genetic and analysis of quantitative trait. Sinauer Associates (1998)

    Google Scholar 

  12. Panchal, J., Marsh, J.L., Park, T.S., Hauffman, B., Pilgram, T., Huang, S.H.: Sagittal craniosynostosis outcome assessment for two methods of timing and interventions. Plast. Reconstr. Surg. 103, 1574–1579 (1999)

    Article  Google Scholar 

  13. Rao, C.: Geometry of circular vectors and pattern recognition of shape of a boundary. Proc. Nat. Acad. Aci. 95, 12783 (2002)

    Article  Google Scholar 

  14. Ruiz-Correa, S., Shapiro, L.G., Meilă, M.: A new paradigm for recognizing 3-D object shapes from range data. IEEE International Conference on Computer Vision 2, 1126–1133 (2003)

    Article  Google Scholar 

  15. Ruiz-Correa, S., Sze, R.W., Lin, H.J., Shapiro, L.G., Speltz, M.L., Cunningham, M.L.: Classifying craniosynostosis deformations by skull shape imaging. In: Proceedings of the IEEE Conference on Computer-Based Medical Systems (2005) (in press)

    Google Scholar 

  16. Ruiz-Correa, S., Sze, R.W., Starr, J.R., Hing, A.V., Lin, H.J., Cunningham, M.L.: A Fourier-based approach for quantifying sagittal synostosis head shape. American Cleft Palate-Craniofacial Association Meeting (2005)

    Google Scholar 

  17. Ruiz-Correa, S., Sze, R.W., Starr, J.R., Lin, H.J., Speltz, M.L., Cunningham, M.L., Hing, A.V.: New scaphocephalyseverity indices of sagittal craniosynostosis: A comparative study with cranial index quantifications. Submitted to the American Cleft Palate-Craniofacial Association Journal (2005)

    Google Scholar 

  18. Scholköpf, B., Smola, A.J.: Learning with Kernels. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  19. Vapnik, V.V.: Statistical Learning Theory. John Wiley and Sons, Chichester (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, H.J. et al. (2005). Efficient Symbolic Signatures for Classifying Craniosynostosis Skull Deformities. In: Liu, Y., Jiang, T., Zhang, C. (eds) Computer Vision for Biomedical Image Applications. CVBIA 2005. Lecture Notes in Computer Science, vol 3765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569541_31

Download citation

  • DOI: https://doi.org/10.1007/11569541_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29411-5

  • Online ISBN: 978-3-540-32125-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics