Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Protein Structural Alphabet and Its Substitution Matrix CLESUM

  • Conference paper
Transactions on Computational Systems Biology II

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 3680))

Abstract

By using a mixture model for the density distribution of the three pseudobond angles formed by C α atoms of four consecutive residues, the local structural states are discretized as 17 conformational letters of a protein structural alphabet. This coarse-graining procedure converts a 3D structure to a 1D code sequence. A substitution matrix between these letters is constructed based on the structural alignments of the FSSP database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asai, K., Hazamizu, S., Handa, K.: Secondary structure prediction by hidden Markov model. CABIOS 9, 141-146 (1993)

    Google Scholar 

  2. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Evol. 268, 78–94 (1997)

    Google Scholar 

  3. Bystroff, C., Baker, D.: Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol. 281, 565–577 (1998)

    Article  Google Scholar 

  4. Camproux, A.C., Tuffery, P., Chevrolat, J.P., Boisvieux, J.F., Hazout, S.: Hidden Markov model approach for identifying the modular framework of the protein backbone. Protein Eng. 12, 1063–1073 (1999)

    Article  Google Scholar 

  5. Edgoose, T., Allison, L., Dowe, D.L.: An MML classification of protein structure that knows about angles and sequences. In: Proc. 3rd Pacific Symposium on Biocomputing (PSB 1998), Hawaii, USA, pp. 585–596 (1998)

    Google Scholar 

  6. Fujiwara, Y., Asogawa, M., Konagaya, A.: Stochastic motif extraction using hidden Markov model. In: Proc. ISMB 1994, pp. 121–129 (1994)

    Google Scholar 

  7. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992)

    Article  Google Scholar 

  8. Holm, L., Sander, C.: Touring protein fold space with Dali/FSSP. Nucleic Acids Research 26, 316–319 (1998)

    Article  Google Scholar 

  9. Krogh, A., Brown, M., Mian, I.S., Sjölander, K., Haussler, D.: Hidden Markov models in computational biology: Applications to protein modeling. J. Mol. Biol. 235, 1501–1531 (1994)

    Article  Google Scholar 

  10. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer J. 7, 308–313 (1965)

    MATH  Google Scholar 

  11. Park, B.H., Levitt, M.: The complexity and accuracy of discrete state models of protein structure, J. Mol. Biol. 249, 493–507 (1995)

    Article  Google Scholar 

  12. Rabiner, L.R.: A tutorial on hidden Markov model and selected applications in speech recognition. Proc. IEEE 77, 257–285 (1989)

    Article  Google Scholar 

  13. Rooman, M.J., Kocher, J.-P.A., Wodak, S.J.: Prediction of protein backbone conformation based on seven structure assignments: Influnce of local interacti1ons. J. Mol. Biol. 221, 961–979 (1991)

    Article  Google Scholar 

  14. Zheng, W.M.: Clustering of amino acids for protein secondary structure prediction. J. Bioinfor. Comp. Biol. 2, 333–342 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, WM., Liu, X. (2005). A Protein Structural Alphabet and Its Substitution Matrix CLESUM. In: Priami, C., Zelikovsky, A. (eds) Transactions on Computational Systems Biology II. Lecture Notes in Computer Science(), vol 3680. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567752_4

Download citation

  • DOI: https://doi.org/10.1007/11567752_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29401-6

  • Online ISBN: 978-3-540-31661-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics