Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Study of Non-smooth Convex Flow Decomposition

  • Conference paper
Variational, Geometric, and Level Set Methods in Computer Vision (VLSM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3752))

Abstract

We present a mathematical and computational feasibility study of the variational convex decomposition of 2D vector fields into coherent structures and additively superposed flow textures. Such decompositions are of interest for the analysis of image sequences in experimental fluid dynamics and for highly non-rigid image flows in computer vision.

Our work extends current research on image decomposition into structural and textural parts in a twofold way. Firstly, based on Gauss’ integral theorem, we decompose flows into three components related to the flow’s divergence, curl, and the boundary flow. To this end, we use proper operator discretizations that yield exact analogs of the basic continuous relations of vector analysis. Secondly, we decompose simultaneously both the divergence and the curl component into respective structural and textural parts. We show that the variational problem to achieve this decomposition together with necessary compatibility constraints can be reliably solved using a single convex second-order conic program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry, 2nd edn. Springer, Heidelberg (2001)

    Google Scholar 

  2. Suter, D.: Motion estimation and vector splines. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, June 1994, pp. 939–942. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  3. Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Patt. Anal. Mach. Intell. 24(3), 365–380 (2002)

    Article  Google Scholar 

  4. Kohlberger, T., Mémin, E., Schnörr, C.: Variational dense motion estimation using the helmholtz decomposition. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 432–448. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Lewalle, J., Delville, J., Bonnet, J.-P.: Decomposition of mixing layer turbulence into coherent structures and background fluctuations. Applied Scientific Research 64(4), 301–328 (2000)

    MATH  Google Scholar 

  6. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  7. Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. In: The fifteenth Dean Jacqueline B. Lewis memorial lectures. University Lecture Series, vol. 22. American Mathematical Society, Providence (2001)

    Google Scholar 

  8. Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Scient. Computing 19(1-3), 553–572 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Vese, L.A., Osher, S.J.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. of Math. Imag. Vision 20(1/2), 7–18 (2004)

    Article  MathSciNet  Google Scholar 

  10. Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. of Math. Imag. Vision 22(1), 71–88 (2005)

    Article  Google Scholar 

  11. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. of Comp. Vision 63(1), 85–104 (2005)

    Article  MathSciNet  Google Scholar 

  12. Yuan, J., Ruhnau, P., Mémin, E., Schnörr, C.: Discrete orthogonal decomposition and variational fluid flow estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 267–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Yin, W., Goldfarb, D., Osher, S.: Total variation based image cartoon-texture decomposition. Technical Report CORC TR-2005-01, Columbia University (2005) (submitted to Inverse Problems)

    Google Scholar 

  14. Hyman, J.M., Shashkov, M.J.: The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal. 36(3), 788–818 (1999)

    Article  MathSciNet  Google Scholar 

  15. Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models. International Journal of Computer Vision 63(1), 85–104 (2005)

    Article  MathSciNet  Google Scholar 

  16. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra and its Applications 284, 193–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Programming, Series B 95(2), 407–430 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB for optimization over symmetric cones. Technical Report, Communications Research Laboratory, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada (August 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, J., Schnörr, C., Steidl, G., Becker, F. (2005). A Study of Non-smooth Convex Flow Decomposition. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds) Variational, Geometric, and Level Set Methods in Computer Vision. VLSM 2005. Lecture Notes in Computer Science, vol 3752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567646_1

Download citation

  • DOI: https://doi.org/10.1007/11567646_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29348-4

  • Online ISBN: 978-3-540-32109-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics