Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3709))

  • 1734 Accesses

Abstract

This paper reconsiders the most basic scheduling problem, that of minimizing the makespan of a partially ordered set of activities, in the context of incomplete knowledge. While this problem is very easy in the deterministic case, its counterpart when durations are interval-valued is much trickier, as standard results and algorithms no longer apply. After positioning this paper in the scope of temporal networks under uncertainty, we provide a complete solution to the problem of finding the latest starting times and floats of activities, and of locating surely critical ones, as they are often isolated. The minimal float problem is NP-hard while the maximal float problem is polynomial. New complexity results and efficient algorithms are provided for the interval-valued makespan minimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49, 61–95 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Morris, P., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal uncertainty. In: IJCAI, pp. 494–502 (2001)

    Google Scholar 

  3. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from consistency to controllabilities. JETAI 11, 23–45 (1999)

    Article  MATH  Google Scholar 

  4. Morris, P.H., Muscettola, N.: Managing temporal uncertainty through waypoint controllability. In: IJCAI, pp. 1253–1258 (1999)

    Google Scholar 

  5. Khatib, L., Morris, P., Morris, R., Rossi, F.: Temporal constraint reasoning with preferences. In: IJCAI, pp. 322–327 (2001)

    Google Scholar 

  6. Kelley, J., Walker, M.: Critical path planning and scheduling. In: Proc. of the Eastern Joint Comp. Conf., pp. 160–172 (1959)

    Google Scholar 

  7. Chanas, S., Zieliński, P.: The computational complexity of the criticality problems in a network with interval activity times. Eur. J. Oper. Res. 136, 541–550 (2002)

    Article  MATH  Google Scholar 

  8. Dubois, D., Fargier, H., Fortin, J.: Computational methods for determining the latest starting times and floats of tasks in interval-valued activity networks. J. Intell. Manuf. (2005) (to appear)

    Google Scholar 

  9. Buckley, J.: Fuzzy PERT. In: Applications of fuzzy set methodologies in industrial engineering, pp. 103–114. Elsevier, Amsterdam (1989)

    Google Scholar 

  10. Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: modeling flexible constraints vs. coping with incomplete knowledge. Eur. J. Oper. Res. 147, 231–252 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dubois, D., Fargier, H., Galvagnon, V.: On latest starting times and floats in activity networks with ill-known durations. Eur. J. Oper. Res. 147, 266–280 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chanas, S., Kamburowski, J.: The use of fuzzy variables in pert. Fuzzy Set Syst. 5, 1–19 (1981)

    Article  MathSciNet  Google Scholar 

  13. Chanas, S., Dubois, D., Zieliński, P.: On the sure criticality of tasks in activity networks with imprecise durations. IEEE T. Syst. Man Cy. B 34, 393–407 (2002)

    Article  Google Scholar 

  14. Zieliński, P.: On computing the latest starting times and floats of activities in a network with imprecise durations. Fuzzy Set Syst. 150, 53–76 (2005)

    Article  MATH  Google Scholar 

  15. Kolisch, R., Sprecher, A.: Psplib - a project scheduling library. Eur. J. Oper. Res. 96, 205–216 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fortin, J., Zieliński, P., Dubois, D., Fargier, H. (2005). Interval Analysis in Scheduling. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_19

Download citation

  • DOI: https://doi.org/10.1007/11564751_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics