Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Fully Abstract Semantics for UML Components

  • Conference paper
Formal Methods for Components and Objects (FMCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3657))

Included in the following conference series:

Abstract

We present a fully abstract semantics for components. This semantics is formalized in terms of a notion of trace for components, providing a description of the component externally observable behavior inspired by UML sequence diagrams. Such a description abstracts from the actual implementation given by UML state-machines. Our full abstraction result is based on a may testing semantics which involves a composition of components in terms of cross-border dynamic class instantiation through component interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  2. Ábrahám, E., Bonsangue, M.M., de Boer, F.S., Steffen, M.: A Structural Operational Semantics for a Concurrent Class Calculus. Tech. rep. 0307 of the Univ. of Kiel (2003)

    Google Scholar 

  3. Ábrahám, E., Bonsangue, M.M., de Boer, F.S., Steffen, M.: Object Connectivity and Full Abstraction for a Concurrent Calculus of Classes. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 37–51. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Ábrahám, E., Bonsangue, M.M., de Boer, F.S., Grüner, A., Steffen, M.: Observability, connectivity, and replay in a sequential calculus of classes. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004. LNCS, vol. 3657, pp. 296–316. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. de Boer, F.S., Bonsangue, M.M., Guillen-Scholten, J.: Components: From object to mobile channels. In: Jifeng, H., Liu, Z. (eds.) Mathematical Frameworks for Component Software – Models for Analysis and Synthesis. World Scientific, Singapore (2005)

    Google Scholar 

  6. Boreale, M., De Nicola, R., Pugliese, R.: Trace and Testing Equivalence on Asynchronous Processes. Information and Computation 172(2), 139–164 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Boer, F.S., Bonsangue, M.M.: A compositional model for confluent dynamic data-flow networks. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, p. 212. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Boreale, M., de Nicola, R.: Testing equivalence for mobile processes. Information and Computation 120, 279–303 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of the ACM 31(3), 560–599 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bruce, K.: Foundations of Object-Oriented Languages: Types and Semantics. MIT Press, Cambridge (2002)

    Google Scholar 

  11. Clark, T., Evans, A., Kent, E.: The metamodelling language calculus: foundation semantics for UML. In: Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 17–31. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Damm, W., Josko, B., Pnueli, A., Votintseva, A.: Understanding UML: A formal semantics of concurrency and communication in Real-Time UML. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852, pp. 71–98. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., Giannini, P.: More dynamic object re-classification: Fickle II. ACM ToPLaS 24(2), 153–191 (2002)

    Article  Google Scholar 

  14. Hennessy, M.: A fully abstract denotational semantics for the π-calculus. Theoretical Computer Science 278(2), 53–89 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hennessy, M., de Nicola, R.: Testing equivalence for processes. Theoretical Computer Science 34, 83–133 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jeffrey, A., Rathke, J.: A Fully Abstract May Testing Semantics for Concurrent Objects. In: Proc. of the 17th LICS, pp. 101–112. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  17. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and Computation 100(1), 1–77 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Object Management Group, UML 2.0 Superstructure (Final Adopted specification). Document – ptc/03-08-02 (August 2004)

    Google Scholar 

  19. Övergaard, G.: Formal Specification of Object-Oriented Meta-Modelling. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, p. 193. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Pierce, B.: Types and Programming Languages. MIT Press, Cambridge (2002)

    Google Scholar 

  21. Snyder, A.: Encapsulation and inheritance in object-oriented programming. In: Proc. OOPSLA, SIGPLAN Notices 21:11, pp. 38–45 (1986)

    Google Scholar 

  22. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented Programming, 2nd edn. Addison-Wesley, Reading (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Boer, F.S., Bonsangue, M.M., Steffen, M., Ábrahám, E. (2005). A Fully Abstract Semantics for UML Components. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, WP. (eds) Formal Methods for Components and Objects. FMCO 2004. Lecture Notes in Computer Science, vol 3657. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561163_3

Download citation

  • DOI: https://doi.org/10.1007/11561163_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29131-2

  • Online ISBN: 978-3-540-31939-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics