Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Genetic Algorithms to Evolve Behavior in Cellular Automata

  • Conference paper
Unconventional Computation (UC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3699))

Included in the following conference series:

Abstract

It is an unconventional computation approach to evolve solutions instead of calculating them. Although using evolutionary computation in computer science dates back to the 1960s, using an evolutionary approach to program other algorithms is not that well known. In this paper a genetic algorithm is used to evolve behavior in cellular automata. It shows how this approach works for different topologies and neighborhood shapes. Some different one dimensional neighborhood shapes are investigated with the genetic algorithm and yield surprisingly good results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press and Institute of Physics Publishing, New York (1997)

    MATH  Google Scholar 

  2. Bäck, T., Breukelaar, R., Willmes, L.: Inverse design of cellular automata by genetic algorithms: an unconventional programming paradigm. In: UPP proceedings in the ’Hot Topics’. LNCS (2005)

    Google Scholar 

  3. Breukelaar, R., Bäck, T.: Evolving transition rules for multi dimensional cellular automata. In: 6th International Conference on Cellular Automata for Research and Industry, ACRI, Amsterdam, The Netherlands. Springer, Heidelberg (2004)

    Google Scholar 

  4. Breukelaar, R., Bäck, T.: Using a genetic algorithm to evolve behavior in multi dimensional cellular automata. In: GECCO proceedings (2005) (to be published)

    Google Scholar 

  5. David, A., Forest, B., Koza, H.: Discovery by genetic programming of a cellular automata rule that is better than any known rule for the majority classification problem (1996)

    Google Scholar 

  6. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, New York (1995)

    Google Scholar 

  7. Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence through Simulated Evolution. John Wiley and Sons, Chichester (1966)

    MATH  Google Scholar 

  8. Gacs, P., Kurdyumov, G.L., Levin, L.A.: One dimensional uniform arrays that wash out finite islands. Problemy Peredachi Informatsii (1978)

    Google Scholar 

  9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  10. Goldberg, D.E.: The Design of Invocation:Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  11. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  13. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  14. Mitchell, M., Crutchfield, J.P.: The evolution of emergent computation. Technical report, Proceedings of the National Academy of Sciences, SFI Technical Report 94-03-012 (1994)

    Google Scholar 

  15. Mitchell, M., Crutchfield, J.P., Hraber, P.T.: Evolving cellular automata to perform computations: Mechanisms and impediments. Physica D 75, 361–391 (1994)

    Article  MATH  Google Scholar 

  16. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart (1973)

    Google Scholar 

  17. Rechenberg, I.: Evolutionsstrategie 1994. Fromman-Holzboog Verlag, Stuttgart (1994)

    Google Scholar 

  18. Schwefel, H.P.: Numerische optimierung von computer-modellen mittels der evolutionsstrategie. Interdisciplinary Systems Research 26 (1977)

    Google Scholar 

  19. Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)

    Google Scholar 

  20. Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics 55 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bäck, T., Breukelaar, R. (2005). Using Genetic Algorithms to Evolve Behavior in Cellular Automata. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G. (eds) Unconventional Computation. UC 2005. Lecture Notes in Computer Science, vol 3699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560319_1

Download citation

  • DOI: https://doi.org/10.1007/11560319_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29100-8

  • Online ISBN: 978-3-540-32022-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics