Nothing Special   »   [go: up one dir, main page]

Skip to main content

Subtyping Object and Recursive Types Logically

(Extended Abstract)

  • Conference paper
Theoretical Computer Science (ICTCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3701))

Included in the following conference series:

Abstract

Subtyping in first order object calculi is studied with respect to the logical semantics obtained by identifying terms that satisfy the same set of predicates, as formalized through an assignment system. It is shown that equality in the full first order ς-calculus is modelled by this notion, which on turn is included in a Morris style contextual equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  2. Abramsky, S.: Domain theory in logical form. Annals of Pure and Applied Logic 51, 1–77 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barendregt, H.P., Coppo, M., Dezani, M.: A filter lambda model and the completeness of type assignment. Journal of Symbolic Logic 48, 931–940 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Breazu-Tannen, V., Coquand, T., Gunter, C.A., Scedrov, A.: Inheritance as implicit coercion. Information and Computation 93, 172–221 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bruce, K.B., Longo, G.: A modest model of records, inheritance and bounded quantification. Information and Computation 87, 196–240 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bruce, K.B., Mitchell, J.C.: Per models of subtyping, recursive types and higher-order polymorphism. In: Proc. of POPL (1992)

    Google Scholar 

  7. de’Liguoro, U.: CICLing 2001. LNCS, vol. 2004, pp. 315–328. Springer, Heidelberg (2001)

    Google Scholar 

  8. de’Liguoro, U.: Subtyping in logical form. In: ITRS 2002. ENTCS 70. Elsevier, Amsterdam (2002)

    Google Scholar 

  9. Gordon, A., Rees, G.: Bisimilarity for first-order calculus of objects with subtyping. In: Proc. of POPL 1996, pp. 386–395 (1996)

    Google Scholar 

  10. Mitchell, J.C.: Foundations for Programming Languages. MIT Press, Cambridge (1996)

    Google Scholar 

  11. van Bakel, S.: Intersection Type Assignment Systems. Theoretical Computer Science 151(2), 385–435 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. van Bakel, S., de’Liguoro, U.: Logical semantics of the first order sigma-calculus. In: Blundo, C., Laneve, C. (eds.) ICTCS 2003. LNCS, vol. 2841, pp. 202–215. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. van Bakel, S., de’Liguoro, U. (eds.): Subtyping object and recursive types logically (July 2005), www.di.unito.it/~deligu/papers/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Bakel, S., de’Liguoro, U. (2005). Subtyping Object and Recursive Types Logically. In: Coppo, M., Lodi, E., Pinna, G.M. (eds) Theoretical Computer Science. ICTCS 2005. Lecture Notes in Computer Science, vol 3701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560586_7

Download citation

  • DOI: https://doi.org/10.1007/11560586_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29106-0

  • Online ISBN: 978-3-540-32024-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics