Abstract
A novel method of unsupervised imagesegmentation using contourlet domain hidden markov trees model is presented. Fuzzy C-mean clustering algorithm is used to capture the likelihood disparity of different texture features. A new context based fusion model is given for preserve more interscale information in contourlet domain. The simulation results of synthetic mosaics and real images show that the proposed unsupervised segmentation algorithm represents a better performance in edge detection and protection and its error probability of the synthetic mosaics is lower than wavelet domain HMT based method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Candès, E.J.: Ridgelet: theory and applications. Ph.D. Thesis, Department of statistics Stanford Univ. (1998)
Candès, E.J.: Monoscale Ridgelets for the representation of Images with Edges. Tech. Report, Stanford Univ. (1999)
Candès, E.J., Donoho, D.L.: Curvelets. Tech. report, Stanford Univ. (1999)
Do, M.N., Vetterli, M.: Contourlet. In: Welland, G.V. (ed.) Beyond Wavelets, Academic Press, New York (2003)
Choi, H., Baraniuk, R.G.: Multiscale Image Segmentation Using Wavelet-Domain Hidden Markov Models. IEEE Transactions on Image Processing 10(9), 1309–1321 (2001)
Sun, Q., Gou, S., Jiao, L.: A New Approach to Unsupervised Image Segmentation based on Wavelet-domain Hidden Markov Tree Models. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 41–48. Springer, Heidelberg (2004)
Song, X.M., Fan, G.L.: Unsupervised Bayesian image segmentation using wavelet domain hidden Markov models. In: IEEE International Conference on Image Processing (ICIP 2003), Barcelona, Spain (September 2003)
Po, D.D.-Y., Do, M.N.: Directional Multiscale Modeling of Images using the Contourlet Transform. In: 2003 IEEE Workshop on Statistical Signal Processing, 28 September-1 October, vol. 1, pp. 262–265 (2003)
Bouman, C.A., Shapiro, M.: A multisclae random field model for Bayesian image segmentation. IEEE Trans. on Image Processing 3(2), 162–177 (1994)
Crouse, M.S., Nowak, R.D., Baraniuk, R.G.: Wavelet-based signal processing using hidden Markov models. IEEE Trans. on Signal Processing 46(4), 886–902 (1998)
Fan, G.L., Xia, X.G.: Wavelet-based texture analysis and synthesis using hidden Markov models. IEEE Trans. on Circuits and Systems, Part I 50(1), 106–120 (2003)
Fan, G.L., Xia, X.G.: A joint multi-context and multiscale approach to Bayesian image segmentation. In: IEEE Trans.on Geoscience and Remote Sensing, vol. 39(12) (December 2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sha, Y., Cong, L., Sun, Q., Jiao, L. (2005). Unsupervised Image Segmentation Using Contourlet Domain Hidden Markov Trees Model. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2005. Lecture Notes in Computer Science, vol 3656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559573_5
Download citation
DOI: https://doi.org/10.1007/11559573_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29069-8
Online ISBN: 978-3-540-31938-2
eBook Packages: Computer ScienceComputer Science (R0)