Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unsupervised Image Segmentation Using Contourlet Domain Hidden Markov Trees Model

  • Conference paper
Image Analysis and Recognition (ICIAR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3656))

Included in the following conference series:

Abstract

A novel method of unsupervised imagesegmentation using contourlet domain hidden markov trees model is presented. Fuzzy C-mean clustering algorithm is used to capture the likelihood disparity of different texture features. A new context based fusion model is given for preserve more interscale information in contourlet domain. The simulation results of synthetic mosaics and real images show that the proposed unsupervised segmentation algorithm represents a better performance in edge detection and protection and its error probability of the synthetic mosaics is lower than wavelet domain HMT based method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Candès, E.J.: Ridgelet: theory and applications. Ph.D. Thesis, Department of statistics Stanford Univ. (1998)

    Google Scholar 

  2. Candès, E.J.: Monoscale Ridgelets for the representation of Images with Edges. Tech. Report, Stanford Univ. (1999)

    Google Scholar 

  3. Candès, E.J., Donoho, D.L.: Curvelets. Tech. report, Stanford Univ. (1999)

    Google Scholar 

  4. Do, M.N., Vetterli, M.: Contourlet. In: Welland, G.V. (ed.) Beyond Wavelets, Academic Press, New York (2003)

    Google Scholar 

  5. Choi, H., Baraniuk, R.G.: Multiscale Image Segmentation Using Wavelet-Domain Hidden Markov Models. IEEE Transactions on Image Processing 10(9), 1309–1321 (2001)

    Article  MathSciNet  Google Scholar 

  6. Sun, Q., Gou, S., Jiao, L.: A New Approach to Unsupervised Image Segmentation based on Wavelet-domain Hidden Markov Tree Models. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 41–48. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Song, X.M., Fan, G.L.: Unsupervised Bayesian image segmentation using wavelet domain hidden Markov models. In: IEEE International Conference on Image Processing (ICIP 2003), Barcelona, Spain (September 2003)

    Google Scholar 

  8. Po, D.D.-Y., Do, M.N.: Directional Multiscale Modeling of Images using the Contourlet Transform. In: 2003 IEEE Workshop on Statistical Signal Processing, 28 September-1 October, vol. 1, pp. 262–265 (2003)

    Google Scholar 

  9. Bouman, C.A., Shapiro, M.: A multisclae random field model for Bayesian image segmentation. IEEE Trans. on Image Processing 3(2), 162–177 (1994)

    Article  Google Scholar 

  10. Crouse, M.S., Nowak, R.D., Baraniuk, R.G.: Wavelet-based signal processing using hidden Markov models. IEEE Trans. on Signal Processing 46(4), 886–902 (1998)

    Article  MathSciNet  Google Scholar 

  11. Fan, G.L., Xia, X.G.: Wavelet-based texture analysis and synthesis using hidden Markov models. IEEE Trans. on Circuits and Systems, Part I 50(1), 106–120 (2003)

    Article  MathSciNet  Google Scholar 

  12. Fan, G.L., Xia, X.G.: A joint multi-context and multiscale approach to Bayesian image segmentation. In: IEEE Trans.on Geoscience and Remote Sensing, vol. 39(12) (December 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sha, Y., Cong, L., Sun, Q., Jiao, L. (2005). Unsupervised Image Segmentation Using Contourlet Domain Hidden Markov Trees Model. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2005. Lecture Notes in Computer Science, vol 3656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559573_5

Download citation

  • DOI: https://doi.org/10.1007/11559573_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29069-8

  • Online ISBN: 978-3-540-31938-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics