Abstract
In a video surveillance system, moving object detection is the most challenging problem especially if the system is applied in complex environments with variable lighting, dynamic and articulate scenes, etc.. Furthermore, a video surveillance system is a real-time application, so discouraging the use of good, but computationally expensive, solutions. This paper presents a set of improvements of a basic background subtraction algorithm that are suitable for video surveillance applications. Besides we present a new evaluation scheme never used in the context of moving object detection algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting Moving Objects, Ghosts, and Shadows in Video Streams. IEEE Trans. PAMI 25(10), 1337–1342 (2003)
Fuentes, L.M., Velastin, S.A.: People Tracking in Indoor Surveillance Applications. In: Workshop on Performance Evaluation of Tracking Systems, PETS 2001 (2001)
Gupte, S., Masoud, O., Martin, R.F.K., Papanikolopoulos, N.P.: Detection and Classification of Vehicles. IEEE Transac. on ITS 3(1), 37–47 (2002)
Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Transac. on PAMI 22(8), 809–830 (2000)
Heikkilä, J., Silvén, O.: A Real-Time System for Monitoring of Cyclists and Pedestrians. In: IEEE Workshop on Visual Surveillance (VS 1999), pp. 74–81 (1999)
Lo, B., Velastin, S.: Automatic congestion detection system for underground platforms. In: 2001 International symposium on intelligent multimedia, video, and speech processing, pp. 158–161 (2001)
Marcenaro, L., Ferrari, M., Marchesotti, L., Regazzoni, C.S.: Multiple object tracking under heavy occlusions by using Kalman filters based on shape matching. In: IEEE International Conference on Image Processing, vol. 3, pp. 341–344 (2002)
Stauder, J., Mech, R., Ostermann, J.: Detection of moving cast shadows for object segmentation. IEEE Transac. on Multimedia 1(1), 65–76 (1999)
Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. on PAMI 22(8), 747–757 (2000)
Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Maintenance. In: Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 255–261 (1999)
Wolf, C.: Text Detection in Images taken from Videos Sequences for Semantic Indexing., Ph.D. Thesis at INSA de Lyon, 20, rue Albert Einstein, 69621 Villeurbanne Cedex, France (2003)
Wren, C.R., Azarbayejani, A., Darrel, T., Pentland, A.P.: Pfinder: Real-Time Tracking of the Human Body. IEEE Trans. PAMI 19(7), 780–785 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Conte, D., Foggia, P., Petretta, M., Tufano, F., Vento, M. (2005). Evaluation and Improvements of a Real-Time Background Subtraction Method. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2005. Lecture Notes in Computer Science, vol 3656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559573_149
Download citation
DOI: https://doi.org/10.1007/11559573_149
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29069-8
Online ISBN: 978-3-540-31938-2
eBook Packages: Computer ScienceComputer Science (R0)