Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evaluation and Improvements of a Real-Time Background Subtraction Method

  • Conference paper
Image Analysis and Recognition (ICIAR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3656))

Included in the following conference series:

Abstract

In a video surveillance system, moving object detection is the most challenging problem especially if the system is applied in complex environments with variable lighting, dynamic and articulate scenes, etc.. Furthermore, a video surveillance system is a real-time application, so discouraging the use of good, but computationally expensive, solutions. This paper presents a set of improvements of a basic background subtraction algorithm that are suitable for video surveillance applications. Besides we present a new evaluation scheme never used in the context of moving object detection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting Moving Objects, Ghosts, and Shadows in Video Streams. IEEE Trans. PAMI 25(10), 1337–1342 (2003)

    Google Scholar 

  2. ftp://pets.rdg.ac.uk/PETS2001/

  3. Fuentes, L.M., Velastin, S.A.: People Tracking in Indoor Surveillance Applications. In: Workshop on Performance Evaluation of Tracking Systems, PETS 2001 (2001)

    Google Scholar 

  4. Gupte, S., Masoud, O., Martin, R.F.K., Papanikolopoulos, N.P.: Detection and Classification of Vehicles. IEEE Transac. on ITS 3(1), 37–47 (2002)

    Google Scholar 

  5. Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Transac. on PAMI 22(8), 809–830 (2000)

    Google Scholar 

  6. Heikkilä, J., Silvén, O.: A Real-Time System for Monitoring of Cyclists and Pedestrians. In: IEEE Workshop on Visual Surveillance (VS 1999), pp. 74–81 (1999)

    Google Scholar 

  7. Lo, B., Velastin, S.: Automatic congestion detection system for underground platforms. In: 2001 International symposium on intelligent multimedia, video, and speech processing, pp. 158–161 (2001)

    Google Scholar 

  8. Marcenaro, L., Ferrari, M., Marchesotti, L., Regazzoni, C.S.: Multiple object tracking under heavy occlusions by using Kalman filters based on shape matching. In: IEEE International Conference on Image Processing, vol. 3, pp. 341–344 (2002)

    Google Scholar 

  9. Stauder, J., Mech, R., Ostermann, J.: Detection of moving cast shadows for object segmentation. IEEE Transac. on Multimedia 1(1), 65–76 (1999)

    Article  Google Scholar 

  10. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. on PAMI 22(8), 747–757 (2000)

    Google Scholar 

  11. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Maintenance. In: Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 255–261 (1999)

    Google Scholar 

  12. Wolf, C.: Text Detection in Images taken from Videos Sequences for Semantic Indexing., Ph.D. Thesis at INSA de Lyon, 20, rue Albert Einstein, 69621 Villeurbanne Cedex, France (2003)

    Google Scholar 

  13. Wren, C.R., Azarbayejani, A., Darrel, T., Pentland, A.P.: Pfinder: Real-Time Tracking of the Human Body. IEEE Trans. PAMI 19(7), 780–785 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Conte, D., Foggia, P., Petretta, M., Tufano, F., Vento, M. (2005). Evaluation and Improvements of a Real-Time Background Subtraction Method. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2005. Lecture Notes in Computer Science, vol 3656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559573_149

Download citation

  • DOI: https://doi.org/10.1007/11559573_149

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29069-8

  • Online ISBN: 978-3-540-31938-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics