Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simple and Efficient Modifications of Elimination Orderings

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3732))

Included in the following conference series:

  • 1169 Accesses

Abstract

We study the problem of modifying a given elimination ordering through local reorderings. We present new theoretical results on equivalent orderings, including a new characterization of such orderings. Based on these results, we define the notion of k-optimality for an elimination ordering, and we describe how to use this in a practical context to modify a given elimination ordering to obtain less fill. We experiment with different values of k, and report on percentage of fill that is actually reduced from an already good initial ordering, like Minimum Degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blair, J.R.S., Heggernes, P., Telle, J.A.: A practical algorithm for making filled graphs minimal. Theor. Comput. Sci. 250, 125–141 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blair, J.R.S., Peyton, B.W.: An introduction to chordal graphs and clique trees. In: Sparse Matrix Computations: Graph Theory Issues and Algorithms, pp. 1–30. Springer, Heidelberg (1993)

    Google Scholar 

  3. Dahlhaus, E.: Minimal elimination ordering inside a given chordal graph. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 132–143. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Dirac, G.A.: On rigid circuit graphs. Anh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific Journal of Math. 15, 835–855 (1965)

    MATH  MathSciNet  Google Scholar 

  6. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combin. Theory Ser. B 16, 47–56 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. George, J.A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall Inc., Englewood Cliffs (1981)

    MATH  Google Scholar 

  8. Liu, J.W.H.: Equivalent sparse matrix reorderings by elimination tree rotations. SIAM J. Sci. Stat. Comput. 9(3), 424–444 (1988)

    Article  MATH  Google Scholar 

  9. Boisvert, R., Pozo, R., Remington, K., Miller, B., Lipman, R.: NIST Matrix Market, http://math.nist.gov/MatrixMarket/

  10. Parter, S.: The use of linear graphs in Gauss elimination. SIAM Review 3, 119–130 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  11. Peyton, B.W.: Minimal orderings revisited. SIAMJ. Matrix Anal. Appl. 23(1), 271–294 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)

    Article  MathSciNet  Google Scholar 

  13. Rose, D.J.: Triangulated graphs and the elimination process. J.Math. Anal. Appl. 32, 597–609 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  14. Villanger, Y.: Lex M versus MCS-M. Reports in Informatics 261, University of Bergen, Norway (2004)

    Google Scholar 

  15. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heggernes, P., Villanger, Y. (2006). Simple and Efficient Modifications of Elimination Orderings. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_95

Download citation

  • DOI: https://doi.org/10.1007/11558958_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29067-4

  • Online ISBN: 978-3-540-33498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics