Nothing Special   »   [go: up one dir, main page]

Skip to main content

Online Task Scheduling on Heterogeneous Clusters: An Experimental Study

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3732))

Included in the following conference series:

Abstract

This paper considers effcient task scheduling methods for applications on heterogeneous clusters. The Master/Worker paradigm is used, where the independent tasks are maintained by a master node which hands out batches of a variable amount of tasks to requesting worker nodes. The Monitor strategy is introduced and compared to other strategies suggested in the literature. Our online strategy is especially suitable for heterogeneous clusters with dynamic loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hummel, S.F., Schonberg, E., Flynn, L.E.: Factoring: Amethod for scheduling parallel loops. Comm. of the ACM 35, 90–101 (1992)

    Article  Google Scholar 

  2. Basney, J., Raman, R., Livny, M.: High Throughput Monte Carlo. In: Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing (1999)

    Google Scholar 

  3. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. on Med. Imaging 8, 263–269 (1989)

    Article  Google Scholar 

  4. Rosenvinge, E.M.R.: Online Task Scheduling On Heterogeneous Clusters: An Experimental Study. Master’s thesis, NTNU (2004), http://www.idi.ntnu.no/~elster/students/ms-theses/rosenvinge-msthesis.pdf

  5. Kruskal, C.P., Weiss, A.: Allocating independent subtasks on parallel processors. IEEE Trans. on Software Eng. 11, 1001–1016 (1985)

    Article  Google Scholar 

  6. Polychronopoulos, C.D., Kuck, D.J.: Guided self-scheduling: A practical scheduling scheme for parallel supercomputers. IEEE Trans. on Comp. 36, 1425–1439 (1987)

    Article  Google Scholar 

  7. Tzen, T.H., Ni, L.M.: Dynamic loop scheduling for shared-memory multiprocessors. In: Proc. of the 1991 Int’l Conference on Parallel Processing, pp. II247–II250. IEEE Computer Society, Los Alamitos (1991)

    Google Scholar 

  8. Hummel, S.F., Schmidt, J., Uma, R.N., Wein, J.: Load-sharing in heterogeneous systems via weighted factoring. In: Proceedings of the eighth annual ACM symposium on Parallel algorithms and architectures, pp. 318–328. ACM Press, New York (1996)

    Chapter  Google Scholar 

  9. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G.: Scheduling Divisible Loads in Parallel and Distributed Systems. Computer Society (1996)

    Google Scholar 

  10. Elwasif, W., Plank, J.S., Wolski, R.: Data staging effects inwide area task farming applications. In: IEEE Int’l Symposium on Cluster Computing and the Grid, Brisbane, Australia, pp. 122–129 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosenvinge, E.M.R., Elster, A.C., Banino, C. (2006). Online Task Scheduling on Heterogeneous Clusters: An Experimental Study. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_137

Download citation

  • DOI: https://doi.org/10.1007/11558958_137

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29067-4

  • Online ISBN: 978-3-540-33498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics