Nothing Special   »   [go: up one dir, main page]

Skip to main content

Feature Space Reduction for Face Recognition with Dual Linear Discriminant Analysis

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3691))

Included in the following conference series:

  • 1127 Accesses

Abstract

Linear Discriminant Analysis (LDA) is widely known feature extraction technique that aims at creating a feature set of enhanced discriminatory power. It was addressed by many researchers and proved to be especially successful approach in face recognition. The authors introduced a novel approach Dual LDA (DLDA) and proposed an efficient SVD-based implementation controlled by two parameters. In this paper DLDA is analyzed from the feature space reduction point of view and the role of the parameters is explained. The comparative experiments conducted on facial database consisting of nearly 2000 individuals show superiority of this approach over class of feature selection methods that choose the features one by one relying on classic statistical measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belheumeur, P.N., Hespahna, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. on PAMI 19, 711–720 (1997)

    Google Scholar 

  2. Bober, M.: Description of MPEG-7 Visual Core Experiments. ISO/IEC JTC1/SC29/WG11, report N749 (2002)

    Google Scholar 

  3. Bailly-Bailliere, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Mariethoz, J., Matas, J., Messer, K., Popovici, V., Poree, F., Ruiz, B., Thiran, J.P.: The BANCA database and evaluation protocol. Audio- and Video-Based Biometric Person Authentication. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 625–638. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative Common Vectors for Face Recognition. IEEE Trans. on PAMI 27, 4–13 (2005)

    Google Scholar 

  5. Chen, L.-F., Liao, H.-Y.M., Ko, M.-T., Lin, J.-C., Yu, G.-J.: A New LDA-based Face Recognition System Which Can Solve the Small Sample Size Problem. Pattern Recog. 33, 1713–1726 (2000)

    Article  Google Scholar 

  6. Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  7. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, London (1972)

    Google Scholar 

  8. Golub, G.H., Van Loan, C.F.: Matrix Computations. The John Hopkins University Press (1993)

    Google Scholar 

  9. Liu, K., Yang, J.-Y., Liu, X.: An Efficient Algorithm for Foley-Sammon Optimal Set of Discriminant Vectors by Algebraic Method. Int’l. J. of Pattern Recog. and Artif. Intell. 6, 817–829 (1992)

    Article  Google Scholar 

  10. Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSbd: The Extended M2VTS Database. In: Proc. 2nd Conf. on Audio and Video-base Biometric Personal Verification, Springer, Heidelberg (1999)

    Google Scholar 

  11. Philips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing J. 16, 295–306 (1998)

    Article  Google Scholar 

  12. Swets, D.L., Weng, J.: Using Discriminant Eigenfeatures for Image Retrieval. IEEE Trans. on PAMI 18, 831–837 (1996)

    Google Scholar 

  13. Xu, Q., Kamel, M.S., Salama, M.M.A.: Significance test for feature subset selection on image recognition. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 244–252. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Yu, H., Yang, J.: A Direct LDA Algorithm for High Dimensional Data - with Application to Face Recognition. Pattern Recog. 34, 2067–2070 (2001)

    Article  MATH  Google Scholar 

  15. Call for Proposals for Face Recognition Technology. ISO/IEC JTC1/SC29/WG11, report N3676 (2000)

    Google Scholar 

  16. Skarbek, W., Kucharski, K., Bober, M.: Face recognition by fisher and scatter linear discriminant analysis. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 638–645. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Skarbek, W., Kucharski, K., Bober, M.: Dual LDA for Face Recognition. Fundamenta Informaticae 61, 303–334 (2004)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kucharski, K., Skarbek, W., Bober, M. (2005). Feature Space Reduction for Face Recognition with Dual Linear Discriminant Analysis. In: Gagalowicz, A., Philips, W. (eds) Computer Analysis of Images and Patterns. CAIP 2005. Lecture Notes in Computer Science, vol 3691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556121_72

Download citation

  • DOI: https://doi.org/10.1007/11556121_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28969-2

  • Online ISBN: 978-3-540-32011-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics