Nothing Special   »   [go: up one dir, main page]

Skip to main content

Complexity-Theoretical Approaches to the Design and Analysis of Cryptographical Boolean Functions

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2005 (EUROCAST 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3643))

Included in the following conference series:

Abstract

In the theory of symmetric cipher design, criteria for the choice of Boolean functions with good behavior have been thoroughly studied. The character of these criteria is mainly statistiscal. We survey the often conflicting propoerties which are generally acknowledged, which shows the almost universal neglect of complexity-theoretic techniques. Of these, we propose the most prominent complexity measure concerning Boolean functions, to wit, boolean circuit complexity (BCC), as a means to assess Boolean function behavior in the context of symmetric algorithm design. The connection between BCC of the non-linear elements of a design and the pseudorandom stream generated with their help is shown by scrutiny of linear complexity profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Transactions on Information Theory IT-30, 776–780 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin (1986)

    MATH  Google Scholar 

  3. Rothaus, O.S.: On ”bent” functions. J. Comb. Theory, Ser. A 20, 300–305 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 549–562. Springer, Heidelberg (1990)

    Google Scholar 

  5. Webster, A.F., Tavares, S.E.: On the design of S-boxes. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)

    Google Scholar 

  6. Preneel, B., Leekwijck, W.V., Linden, L.V., Govaerts, R., Vandewalle, J.: Propagation characteristics of Boolean functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)

    Google Scholar 

  7. Zhang, K., Zheng, Y.: GAC—the criterion for global avalanche characteristics of cryptographic functions. The Journal of Universal Computer Science 1, 316 (1995)

    Google Scholar 

  8. Guo-Zhen, X., Massey, J.L.: A spectral characterization of correlation-immune combining functions. IEEE Transactions on Information Theory IT-34, 569–571 (1988)

    Article  MATH  Google Scholar 

  9. Golomb, S.W.: On the classification of boolean functions. IEEE Transactions on Information Theory, 176–186 (1959)

    Google Scholar 

  10. Jansen, C.J.A., Boekee, D.E.: The shortest feedback shift register that can generate a given sequence. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 90–99. Springer, Heidelberg (1990)

    Google Scholar 

  11. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical Journal 28 (1949)

    Google Scholar 

  12. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory IT-22, 783–795 (1976)

    Article  MathSciNet  Google Scholar 

  13. Shannon, C.: The synthesis of two–terminal switching circuits. Bell System Technical Journal 28, 59–98 (1949)

    MathSciNet  Google Scholar 

  14. Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the Advanced Encryption Standard. NIST AES proposal, National Institute for Standards and Technology, Gaithersburg, MD, USA (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cobas, J.D.G., Brugos, J.A.L. (2005). Complexity-Theoretical Approaches to the Design and Analysis of Cryptographical Boolean Functions. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2005. EUROCAST 2005. Lecture Notes in Computer Science, vol 3643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556985_44

Download citation

  • DOI: https://doi.org/10.1007/11556985_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29002-5

  • Online ISBN: 978-3-540-31829-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics