Abstract
Combining classifiers has proved to be an effective solution to several classification problems in pattern recognition. In this paper we use classifier combination methods for the classification of natural images. In the image classification, it is often beneficial to consider each feature type separately, and combine the classification results in the final classifier. We present a classifier combination strategy that is based on classification result vector, CRV. It can be applied both in supervised and unsupervised manner. In this paper we apply our classifier combination method to the classification of rock images that are non-homogenous in terms of their color and texture properties.
Chapter PDF
Similar content being viewed by others
References
Alkoot, F.M., Kittler, J.: Experimental evaluation of expert fusion strategies. Pattern Recognition Letters 20, 1361–1369 (1999)
Breiman, L.: Bagging predictors. Machine Learning 26, 123–140 (1996)
Brunelli, R., Falavigna, D.: Person Identification Using Multiple Cues. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 955–966 (1995)
Cao, J., Ahmadi, M., Shridhar, M.: Recognition of Handwritten Numerals with Multiple Feature and Multistage Classifier. Pattern Recognition 28, 153–160 (1995)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)
Duin, R.P.W.: The Combining Classifier: to Train or Not to Train. In: Proceedings of 16th International Conference on Pattern Recognition, vol. 2, pp. 765–770 (2002)
Freund, Y., Shaphire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1995)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering, a review. ACM Computing Surveys 31, 265–323 (1999)
Jain, A.K., Prabhakar, S., Chen, S.: Combining Multiple Matchers for a High Security Fingerprint Verification System. Pattern Recognition Letters 20, 1371–1379 (1999)
Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)
Lepistö, L., Kunttu, I., Autio, J., Visa, A.: Classification Method for Colored Natural Textures Using Gabor Filtering. In: Proceedings of 12th International Conference on Image Analysis and Processing, pp. 397–401 (2003)
Lepistö, L., Kunttu, I., Autio, J., Visa, A.: Classification of Non-homogenous Textures by Combining Classifiers. In: Proceedings of IEEE International Conference on Image Processing, vol. 1, pp. 981–984 (2003)
Lin, X., Yacoub, S., Burns, J., Simske, S.: Performance analysis of pattern classifier combination by plurality voting. Pattern Recognition Letters 24, 1959–1969 (2003)
Lu, X., Wang, Y., Jain, A.K.: Combining Classifiers for Face Recognition. In: Proceedings of International Conference on Multimedia and Expo, vol. 3, pp. 13–16 (2003)
Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of image Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 837–842 (1996)
Manjunath, B.S., Ohm, J.-R., Vasuvedan, V.V., Yamada, A.: Color and Texture Descriptors. IEEE Transactions on Circuits and Systems for Video Technology 11, 703–715 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lepistö, L., Kunttu, I., Autio, J., Visa, A. (2005). Classification of Natural Images Using Supervised and Unsupervised Classifier Combinations. In: Roli, F., Vitulano, S. (eds) Image Analysis and Processing – ICIAP 2005. ICIAP 2005. Lecture Notes in Computer Science, vol 3617. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553595_94
Download citation
DOI: https://doi.org/10.1007/11553595_94
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28869-5
Online ISBN: 978-3-540-31866-8
eBook Packages: Computer ScienceComputer Science (R0)