Nothing Special   »   [go: up one dir, main page]

Skip to main content

Texture Image Retrieval: A Feature-Based Correspondence Method in Fourier Spectrum

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

This paper presents an effective texture descriptor invariant to translation, scaling, and rotation for texture-based image retrieval applications. The proposed texture descriptor is built taking the Fourier space of the image. In order to find the best texture descriptor, a quantization scheme based on Lloyd’s technique is proposed. As frequency descriptors are not invariant to all geometrical transformations as scaling and rotation, the modal analysis is applied to overcome these problems. Our image database is extracted from Brodatz album as well other sources. The proposed method is also compared with other content-based techniques and their performance is evaluated through several experiments. The effectiveness of both methods is measured by the commonly used retrieval performance measurement – Precision and Recall.

This work is partially supported by CAPES, FUNAPE and CNPq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pentland, A., Piccard, R.W., Sclaroff, S.: Photobook: Content-based manipulation of image databases. International Journal of Computer Vision 3, 233–254 (1996)

    Article  Google Scholar 

  2. Zachary, J., Iyengar, S.S., Barhen, J.: Content based image retrieval and information theory: A general approach. JASIST - Journal of the American Society for Information Science and Technology 52, 840–852 (2001)

    Article  Google Scholar 

  3. Hirata, K., Kato, T.: Query by visual example - content based image retrieval. In: EDBT 1992: Proceedings of the 3rd International Conference on Extending Database Technology, London, UK, pp. 56–71. Springer, Heidelberg (1992)

    Google Scholar 

  4. Rao, A.R.: A taxonomy for texture description and identification. Springer, New York (1990)

    MATH  Google Scholar 

  5. Androutsas, D., Plataniotis, K., Venetsanopoulos, A.: Image retrieval using directional detail histograms. In: Image and Video Databases VI, Proccedings of SPIE, vol. 99, pp. 129–137 (1998)

    Google Scholar 

  6. Kato, T.: Database architecture for content-based image retrieval in image storage and retrieval systems. In: Proccedings of SPIE, vol. 3846, pp. 112–123 (1992)

    Google Scholar 

  7. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of large image data. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 837–842 (1996)

    Article  Google Scholar 

  8. Gimel’farb, G., Jain, A.: On retrieving textured images from an image database. Pattern Recognition, 1461–1483 (1996)

    Google Scholar 

  9. Cohen, S., Guibas, L.: Shape-based indexing and retrieval: some first steps. In: ARPA 1996 Proceedings of Image Understanding Workshop, vol. 2, pp. 1209–1212 (1996)

    Google Scholar 

  10. Guidava, V., Raghavan, V.: Design and evaluation of algorithms for image retrieval by spatial similarity. Information Systems 13, 115–144 (1995)

    Google Scholar 

  11. Shapiro, L., Brady, J.: Feature-based correspondence - an eigenvector approach. Image and Vision Computing 10, 283–288 (1992)

    Article  Google Scholar 

  12. Carcassoni, M., Ribeiro, E., Hancock, E.: Eigenvector method for texture recognition. International Conference on Image Processing 3, 321–324 (2002)

    Google Scholar 

  13. Carcassoni, M., Hancock, E.R.: Correspondence matching using spectral clusters. In: 12th Scandinavian Conference on Image Analysis (SCIA 2001), pp. 243–249 (2001)

    Google Scholar 

  14. Carcassoni, M., Hancock, E.R.: Correspondence matching with modal clusters. PAMI 25, 1609–1615 (2003)

    Google Scholar 

  15. Carcassoni, M., Hancock, E.: Point pattern matching with robust spectral correspondence. IEEE Computer Society Vision and Pattern Recognition 1, 649–655 (2000)

    Google Scholar 

  16. Lloyd, S.: Least squares quantization in pcm. IEEE Transactions on information theory 2, 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  17. Ravela, S., Manmatha, R.: On computing global similarity in images. In: WACV 1998: Proceedings of the 4th IEEE Workshop on Applications of Computer Vision (WACV 1998), pp. 82–87. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  18. Zachary, J., Iyengar, S.S.: Information theoretic similarity measures for content based image retrieval. JASIST - Journal of the American Society for Information Science and Technology 52, 856–867 (2001)

    Article  Google Scholar 

  19. Horn, B.: Robot Vision. The MIT Eletrical Engering and Computer Science Series. McGrall Hill, NJ (1986)

    Google Scholar 

  20. Kay, S.: Modern Spectral Estimation. Signal Processing Series. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  21. Souza, A.M.R., Barcelos, C.A.Z.: Sobre eliminação de ruídos e quantização no processo de restauração de imagens. Revista Horizonte Científico, 1–16 (2002)

    Google Scholar 

  22. Brodatz, P.: A Photographic Album for Artists and Designers. Dover, New York (1966)

    Google Scholar 

  23. Ojala, T., Maenpaa, T., Pietikainen, M., Viertola, J., Kyllnen, J., Huovinen, S.: Outex - new framework for empirical evaluation of texture analysis algorithms. In: 16th International Conference on Pattern Recognition, vol. 1, pp. 701–706 (2002)

    Google Scholar 

  24. Yates, R.B., Neto, B.R.: Modern Information Retrieval. Addison Wesley, Reading (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barcelos, C.A.Z., Ferreira, M.J.R., Rodrigues, M.L. (2005). Texture Image Retrieval: A Feature-Based Correspondence Method in Fourier Spectrum. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_48

Download citation

  • DOI: https://doi.org/10.1007/11552499_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics