Nothing Special   »   [go: up one dir, main page]

Skip to main content

Monotonic Multi-layer Perceptron Networks as Universal Approximators

  • Conference paper
Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3697))

Included in the following conference series:

Abstract

Multi-layer perceptron networks as universal approximators are well-known methods for system identification. For many applications a multi-dimensional mathematical model has to guarantee the monotonicity with respect to one or more inputs. We introduce the MONMLP which fulfils the requirements of monotonicity regarding one or more inputs by constraints in the signs of the weights of the multi-layer perceptron network. The monotonicity of the MONMLP does not depend on the quality of the training because it is guaranteed by its structure. Moreover, it is shown that in spite of its constraints in signs the MONMLP is a universal approximator. As an example for model predictive control we present an application in the steel industry.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Mostafa, Y.S.: Hints. Neural Computation 7, 639–671 (1995)

    Article  Google Scholar 

  2. Lampinen, J., Selonen, A.: Multilayer perceptron training with inaccurate derivative information. In: Proc. IEEE International Conference on Neural Networks ICNN 1995, Perth, West Australia, vol. 5, pp. 2811–2815 (1995)

    Google Scholar 

  3. Sill, J., Abu-Mostafa, Y.S.: Monotonicity hints. In: Advances in Neural Information Processing Systems, Cambridge, MA, vol. 9, pp. 634–640 (1997)

    Google Scholar 

  4. Sill, J.: Monotonic networks. In: Advances in Neural Information Processing Systems, Cambridge, MA, vol. 10, pp. 661–667 (1998)

    Google Scholar 

  5. Rollfinke, R.: Globale Modellierung mit Neuronalen Netzen unter Einhaltung von Nebenbedingungen in den Gradienten. Diploma thesis in cooperation with Siemens AG, Fakultät für Informatik und Automatisierung, TU Ilmenau, Germany (2000)

    Google Scholar 

  6. Lang, B.: Können Neuronale Netze monotones Verhalten für bestimmte Dimensionen garantieren? Technical report, Siemens AG, unpublished, Munich, Germany (1999)

    Google Scholar 

  7. Zhang, H., Zhang, Z.: Feedforward networks with monotone constraints. In: Proc. IEEE International Joint Conference on Neural Networks IJCNN 1999, Washington, DC, USA, vol. 3, pp. 1820–1823 (1999)

    Google Scholar 

  8. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989)

    Article  Google Scholar 

  9. Löffler, H.U., Döll, R., Forsch, G.: Microstructure monitor controls product quality at Thyssen Beeckerwerth. In: Proc. METEC Congress, 3rd European Rolling Conference, Düsseldorf, Germany, pp. 221–225 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lang, B. (2005). Monotonic Multi-layer Perceptron Networks as Universal Approximators. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_6

Download citation

  • DOI: https://doi.org/10.1007/11550907_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28755-1

  • Online ISBN: 978-3-540-28756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics