Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-class Pattern Classification Based on a Probabilistic Model of Combining Binary Classifiers

  • Conference paper
Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3697))

Included in the following conference series:

Abstract

We propose a novel probabilistic model for constructing a multi-class pattern classifier by weighted aggregation of general binary classifiers including one-versus-the-rest, one-versus-one, and others. Our model has a latent variable that represents class membership probabilities, and it is estimated by fitting it to probability estimate outputs of binary classfiers. We apply our method to classification problems of synthetic datasets and a real world dataset of gene expression profiles. We show that our method achieves comparable performance to conventional voting heuristics.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience, Hoboken (2000)

    Google Scholar 

  2. Oba, S., Sato, M., Ishii, S.: Variational Bayes method for Mixture of Principal Component Analyzers. In: Proceeding for 7th International Conference on Neural Information Processing (ICONIP 2000), vol. 2, pp. 1416–1421 (2000)

    Google Scholar 

  3. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  4. Schölkopf, B., Burges, C., Vapnik, V.: Extracting support data for a given task. In: Proceedings of the First International Conference on Knowledge Discovery and Data Mining, pp. 252–257 (1995)

    Google Scholar 

  5. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 10. The MIT Press, Cambridge (1998)

    Google Scholar 

  6. Schölkopf, B., Burges, C., Smola, A.: Advances in Kernel Methods Support Vector Learning. The MIT Press, Cambridge (1999)

    Google Scholar 

  7. Li, T., Zhang, C., Ogihara, M.: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20, 2429–2437 (2004)

    Article  Google Scholar 

  8. Anderson, J.: Logistic discrimination. Biometrika 59, 19–35 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bradley, R.A., Terry, M.E.: Rank Analysis of incomplete block designs, I. The method of paired comparisons. Biometrika 41, 324–345 (1952)

    MathSciNet  Google Scholar 

  10. Tax, D., Duin, R.P.W.: Using two-class classifiers for multi-class classification. In: Proceedings 16th International Conference on Pattern Recognition (ICPR). vol. 2, pp. 124–127 (2002)

    Google Scholar 

  11. Ramaswamy, S., et al.: Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. USA 98, 15149–15154 (2001)

    Article  Google Scholar 

  12. Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yukinawa, N., Oba, S., Kato, K., Ishii, S. (2005). Multi-class Pattern Classification Based on a Probabilistic Model of Combining Binary Classifiers. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_54

Download citation

  • DOI: https://doi.org/10.1007/11550907_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28755-1

  • Online ISBN: 978-3-540-28756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics