Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3697))

Included in the following conference series:

  • 3593 Accesses

Abstract

In many real–life problems we deal with a set of objects together with their properties. Due to incompleteness and/or imprecision of available data, the true knowledge about subsets of objects can be determined approximately. In this paper we present a fuzzy generalisation of two relation–based operations suitable for set approximations. The first approach is based on relationships between objects and their properties, while the second set approximation operations are based on similarities between objects. Some properties of these operations are presented.

The work was carried out in the framework of COST Action 274/TARSKI on Theory and Applications of Relational Structures as Knowledge Instruments ( www.tarski.org ).

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Düntsch, I., Gediga, G.: Approximation operators in qualitative data analysis. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 214–230. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Düntsch, I., Gediga, G.: Modal–like operators in qualitative data analysis. In: Proceedings of the 2nd IEEE International Conference on Data Mining ICDM, pp. 155–162 (2002)

    Google Scholar 

  3. Dubois, D., Prade, H.: Rough Fuzzy Sets and Fuzzy Rough Sets. Int. J. of General Systems 17(2-3), 191–209 (1990)

    Article  MATH  Google Scholar 

  4. Klir, G.J., Yuan, B.: Fuzzy Logic: Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  5. Orłowska, E. (ed.): Incomplete Information: Rough Set Analysis. Physica–Verlag, Heidelberg (1998)

    Google Scholar 

  6. Pal, S.K., Skowron, A.: Rough Fuzzy Hybridization: A New Trend in Decision Making. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  7. Pawlak, Z.: Rough sets. Int. Journal of Computer and Information Science 11(5), 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  9. Radzikowska, A.M., Kerre, E.E.: A fuzzy generalisation of information relations. In: Orłowska, E., Fitting, M. (eds.) Beyond Two: Theory and Applications of Multiple–Valued Logics, pp. 287–312. Springer, Heidelberg (2002)

    Google Scholar 

  10. Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Radzikowska, A.M., Kerre, E.E.: On L–valued fuzzy rough sets. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 526–531. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Radzikowska, A.M., Kerre, E.E.: Fuzzy rough sets based on residuated lattices. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 278–297. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, Amsterdam (1983)

    MATH  Google Scholar 

  14. Słowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Advances in Machine Intelligence and Soft Computing, vol. 4, pp. 17–33. Duke University Press, Durham (1997)

    Google Scholar 

  15. Thiele, H.: On the definition of modal operators in fuzzy logic. In: Proceedings of ISMVL 1993, pp. 62–67 (1993)

    Google Scholar 

  16. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–358 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Radzikowska, A.M. (2005). A Fuzzy Approach to Some Set Approximation Operations. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_107

Download citation

  • DOI: https://doi.org/10.1007/11550907_107

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28755-1

  • Online ISBN: 978-3-540-28756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics