Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Inductive Learning Algorithm with a Partial Completeness and Consistence via a Modified Set Covering Problem

  • Conference paper
Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3697))

Included in the following conference series:

Abstract

We present an inductive learning algorithm that allows for a partial completeness and consistence, i.e. that derives classification rules correctly describing, e.g, most of the examples belonging to a class and not describing most of the examples not belonging to this class. The problem is represented as a modification of the set covering problem that is solved by a greedy algorithm. The approach is illustrated on some medical data.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balas, E., Padberg, M.W.: Set partitioning - A survey. In: Christofides, N. (ed.) Combinatorial Optimisation. Wiley, New York (1979)

    Google Scholar 

  2. Beasley, J.E.: A genetic algorithm for the set covering problem. European Journal of Operational Research 94, 392–404 (1996)

    Article  MATH  Google Scholar 

  3. Christofides, N., Korman, S.: A computational survey of methods for the set covering problem. Management Sci. 21, 591–599 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chvatal, V.: A greedy heuristic for the set-covering problem. Maths. of Oper. Res. 4(3), 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kacprzyk, J., Szkatuła, G.: Machine learning from examples under errors in data. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU 1994. LNCS, vol. 945, pp. 1047–1051. Springer, Heidelberg (1995)

    Google Scholar 

  6. Kacprzyk, J., Szkatuła, G.: Machine learning from examples under errors in data. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) Fuzzy Logic and Soft Computing, pp. 31–36. World Scientific, Singapore (1995)

    Chapter  Google Scholar 

  7. Kacprzyk, J., Szkatuła, G.: An algorithm for learning from erroneous and incorrigible examples. Int. J. of Intelligent Syst. 11, 565–582 (1996)

    Article  MATH  Google Scholar 

  8. Kacprzyk, J., Szkatuła, G.: An improved inductive learning algorithm with a preanalysis of data. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325, pp. 157–166. Springer, Heidelberg (1997)

    Google Scholar 

  9. Kacprzyk, J., Szkatuła, G.: IP1 - An Improved Inductive Learning Procedure with a Preprocessing of Data. In: Xu, L., Chan, L.W., King, I., Fu, A. (eds.) Intelligent Data Engineering and Learning. Perspectives on Financial Engineering and Data Mining. Proc. of IDEAL 1998, pp. 385–392. Springer, Hong Kong (1998)

    Google Scholar 

  10. Kacprzyk, J., Szkatuła, G.: An inductive learning algorithm with a preanalysis of data. Int. J. of Knowledge - Based Intelligent Engineering Systems 3, 135–146 (1999)

    Google Scholar 

  11. Kacprzyk, J., Szkatuła, G.: An integer programming approach to inductive learning using genetic algorithm. In: Proceedings of CEC 2002 - The 2002 Congress on Evolutionary Computation, CEC 2002, Honolulu, Hawaii, pp. 181–186 (2002)

    Google Scholar 

  12. Kacprzyk, J., Szkatuła, G.: An integer programming approach to inductive learning using genetic and greedy algorithms. In: Jain, L.C., Kacprzyk, J. (eds.) New Learning Paradigms in Soft Computing, pp. 322–366. Physica-Verlag, Heidelberg (2002)

    Google Scholar 

  13. Kacprzyk, J., Szkatuła, G.: A softened formulation of inductive learning and its use for coronary disease data. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 200–209. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Michalski, R.S.: A theory and methodology of inductive learning. In: Michalski, R., Carbonell, J., Mitchell, T.M. (eds.) Machine Learning. Tioga Press (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kacprzyk, J., Szkatuła, G. (2005). An Inductive Learning Algorithm with a Partial Completeness and Consistence via a Modified Set Covering Problem. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_105

Download citation

  • DOI: https://doi.org/10.1007/11550907_105

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28755-1

  • Online ISBN: 978-3-540-28756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics