Abstract
We present an inductive learning algorithm that allows for a partial completeness and consistence, i.e. that derives classification rules correctly describing, e.g, most of the examples belonging to a class and not describing most of the examples not belonging to this class. The problem is represented as a modification of the set covering problem that is solved by a greedy algorithm. The approach is illustrated on some medical data.
An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balas, E., Padberg, M.W.: Set partitioning - A survey. In: Christofides, N. (ed.) Combinatorial Optimisation. Wiley, New York (1979)
Beasley, J.E.: A genetic algorithm for the set covering problem. European Journal of Operational Research 94, 392–404 (1996)
Christofides, N., Korman, S.: A computational survey of methods for the set covering problem. Management Sci. 21, 591–599 (1975)
Chvatal, V.: A greedy heuristic for the set-covering problem. Maths. of Oper. Res. 4(3), 233–235 (1979)
Kacprzyk, J., Szkatuła, G.: Machine learning from examples under errors in data. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU 1994. LNCS, vol. 945, pp. 1047–1051. Springer, Heidelberg (1995)
Kacprzyk, J., Szkatuła, G.: Machine learning from examples under errors in data. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) Fuzzy Logic and Soft Computing, pp. 31–36. World Scientific, Singapore (1995)
Kacprzyk, J., Szkatuła, G.: An algorithm for learning from erroneous and incorrigible examples. Int. J. of Intelligent Syst. 11, 565–582 (1996)
Kacprzyk, J., Szkatuła, G.: An improved inductive learning algorithm with a preanalysis of data. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325, pp. 157–166. Springer, Heidelberg (1997)
Kacprzyk, J., Szkatuła, G.: IP1 - An Improved Inductive Learning Procedure with a Preprocessing of Data. In: Xu, L., Chan, L.W., King, I., Fu, A. (eds.) Intelligent Data Engineering and Learning. Perspectives on Financial Engineering and Data Mining. Proc. of IDEAL 1998, pp. 385–392. Springer, Hong Kong (1998)
Kacprzyk, J., Szkatuła, G.: An inductive learning algorithm with a preanalysis of data. Int. J. of Knowledge - Based Intelligent Engineering Systems 3, 135–146 (1999)
Kacprzyk, J., Szkatuła, G.: An integer programming approach to inductive learning using genetic algorithm. In: Proceedings of CEC 2002 - The 2002 Congress on Evolutionary Computation, CEC 2002, Honolulu, Hawaii, pp. 181–186 (2002)
Kacprzyk, J., Szkatuła, G.: An integer programming approach to inductive learning using genetic and greedy algorithms. In: Jain, L.C., Kacprzyk, J. (eds.) New Learning Paradigms in Soft Computing, pp. 322–366. Physica-Verlag, Heidelberg (2002)
Kacprzyk, J., Szkatuła, G.: A softened formulation of inductive learning and its use for coronary disease data. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 200–209. Springer, Heidelberg (2005)
Michalski, R.S.: A theory and methodology of inductive learning. In: Michalski, R., Carbonell, J., Mitchell, T.M. (eds.) Machine Learning. Tioga Press (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kacprzyk, J., Szkatuła, G. (2005). An Inductive Learning Algorithm with a Partial Completeness and Consistence via a Modified Set Covering Problem. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_105
Download citation
DOI: https://doi.org/10.1007/11550907_105
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28755-1
Online ISBN: 978-3-540-28756-8
eBook Packages: Computer ScienceComputer Science (R0)