Abstract
A significant part of medical data remains stored as unstructured texts. Semantic search requires introduction of markup tags. Experts use their background knowledge to categorize new documents, and knowing category of these documents disambiguate words and acronyms. A model of document similarity that includes a priori knowledge and captures intuition of an expert, is introduced. It has only a few parameters that may be evaluated using linear programming techniques. This approach applied to categorization of medical discharge summaries provided simpler and much more accurate model than alternative text categorization approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Campbell, D., Johnson, S.B.: Comparing syntactic complexity in medical and non-medical corpora. In: Proc. of the AMIA Annual Symposium, pp. 90–95 (2001)
Pestian, J., Aronow, B., Davis, K.: Design and Data Collection in the Discovery System. In: Proc. Int. Conf. on Math. and Eng. Techniques in Medicine and Biological Sciences. CSREA Press, Providence (2002)
Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)
MetaMap: http://mmtx.nlm.nih.gov
Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.J.: PCx: An Interior-Point Code for Linear Programming. Optim. Method. Softw. 12, 397–430 (1999)
MedNet: http://www.medicinenet.com
Boston, C.H.: http://web1.tch.harvard.edu/cfapps/A2Z.cfm
Medline Plus: http://www.nlm.nih.gov/medlineplus/encyclopedia.html
GhostMiner: http://www.fqspl.com.pl/ghostminer/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Itert, L., Duch, W., Pestian, J. (2005). Medical Document Categorization Using a Priori Knowledge . In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_99
Download citation
DOI: https://doi.org/10.1007/11550822_99
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28752-0
Online ISBN: 978-3-540-28754-4
eBook Packages: Computer ScienceComputer Science (R0)