Nothing Special   »   [go: up one dir, main page]

Skip to main content

Medical Document Categorization Using a Priori Knowledge

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

  • 1271 Accesses

Abstract

A significant part of medical data remains stored as unstructured texts. Semantic search requires introduction of markup tags. Experts use their background knowledge to categorize new documents, and knowing category of these documents disambiguate words and acronyms. A model of document similarity that includes a priori knowledge and captures intuition of an expert, is introduced. It has only a few parameters that may be evaluated using linear programming techniques. This approach applied to categorization of medical discharge summaries provided simpler and much more accurate model than alternative text categorization approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Campbell, D., Johnson, S.B.: Comparing syntactic complexity in medical and non-medical corpora. In: Proc. of the AMIA Annual Symposium, pp. 90–95 (2001)

    Google Scholar 

  2. Pestian, J., Aronow, B., Davis, K.: Design and Data Collection in the Discovery System. In: Proc. Int. Conf. on Math. and Eng. Techniques in Medicine and Biological Sciences. CSREA Press, Providence (2002)

    Google Scholar 

  3. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  4. UMLS: http://www.nlm.nih.gov/research/umls

  5. MetaMap: http://mmtx.nlm.nih.gov

  6. Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.J.: PCx: An Interior-Point Code for Linear Programming. Optim. Method. Softw. 12, 397–430 (1999)

    Article  MathSciNet  Google Scholar 

  7. MedNet: http://www.medicinenet.com

  8. Boston, C.H.: http://web1.tch.harvard.edu/cfapps/A2Z.cfm

  9. Medline Plus: http://www.nlm.nih.gov/medlineplus/encyclopedia.html

  10. GhostMiner: http://www.fqspl.com.pl/ghostminer/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Itert, L., Duch, W., Pestian, J. (2005). Medical Document Categorization Using a Priori Knowledge . In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_99

Download citation

  • DOI: https://doi.org/10.1007/11550822_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics