Nothing Special   »   [go: up one dir, main page]

Skip to main content

Study of Nitric Oxide Effect in the Hebbian Learning: Towards a Diffusive Hebb’s Law

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

  • 1630 Accesses

Abstract

The Computational Neuroscience has as main goal the understanding of the computational style of the brain and developing artificial systems with brain capabilities. Our paper belongs to this field. We will use an Hebbian neural ensemble which follow a non-linear differential equation system namely Hebbian System (HS), which represent the neurodynamics and the adaptation in accordance with the Hebb’s postulate, to study the influence of the NO diffusion in the Hebbian learning. Considering that the postsynaptic neurons provide retrograde signals to the presynaptic neurons [1] we suggest the NO as a probable biological support to the Hebb’s law propounding a new mathematical formulation of that learning law, the diffusive Hebb’s law. We will present a study of the behavior of the diffusive Hebb’s law using a Diffusive Hebbian System (DHS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tao, H.W., Poo, M.-m.: Retrograde signaling at central synapses. PNAS 98(20), 11009–11015 (2001)

    Article  Google Scholar 

  2. Brown, T.H., Kairiss, E.W., Keenan, C.L.: Hebbian Synapses: Biophysical Mechanisms and Algorithms. Annu. Rev. Neurosci. 13, 475–511 (1990)

    Article  Google Scholar 

  3. Tanzi, E.: I fatti e la induzioni nell ’odierna istologia del sistema nervioso. Riv. Sper. Freniatr. Med. Leg. Alienazioni Ment. Soc.Ital. Psichiatria 19, 419–472 (1893)

    Google Scholar 

  4. Gluck, M.A., Granger, R.: Annu. Rev. Neurosci. 16, 667–706 (1993)

    Google Scholar 

  5. Hebb, D.O.: The organization of behaviour. Wiley and Sons, New York (1949)

    Google Scholar 

  6. Suárez Araujo, C.P.: Study and Reflections on the Functional and Organisational Role of Neuromessenger Nitric Oxide in Learning: An Artificial and Biological Approach. Computer Anticipatory Systems AIP 517, 296–307 (2000)

    Google Scholar 

  7. Fernández López, P., Suárez Araujo, C.P., García Báez, P., Sánchez Martín, G.: Diffusion Associative Network: Diffusive Hybrid Neuromodulation and Volume Learning. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 54–61. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Korneev, S.A., Straub, V., Kemenes, I., Korneeva, E.I., Ott, S.R., Benjamin, P.R., OShea, M.: Timed and Targeted Differential Regulation of Nitric Oxide Synthase (NOS) and Anti-NOS Genes by Reward Conditioning Leading to Long-Term Memory Formatio. J. Neurosci. 25(5), 1188–1192 (2005)

    Article  Google Scholar 

  9. Suárez Araujo, C.P., Fernández López, P., García Báez, P.: Towards a Model of Volume Transmission in Biological and Artificial Neural Networks: A CAST Approach. In: Moreno-Díaz Jr., R., Buchberger, B., Freire, J.-L. (eds.) EUROCAST 2001. LNCS, vol. 2178, pp. 328–342. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Fernández López, P., Suárez Araujo, C.P., García Báez, P., Regidor García, J.: A Model of Nitric Oxide Diffusion based in Compartmental Systems (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Araujo, C.P.S., López, P.F., Báez, P.G., García, J.R. (2005). Study of Nitric Oxide Effect in the Hebbian Learning: Towards a Diffusive Hebb’s Law. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_40

Download citation

  • DOI: https://doi.org/10.1007/11550822_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics