Abstract
The Computational Neuroscience has as main goal the understanding of the computational style of the brain and developing artificial systems with brain capabilities. Our paper belongs to this field. We will use an Hebbian neural ensemble which follow a non-linear differential equation system namely Hebbian System (HS), which represent the neurodynamics and the adaptation in accordance with the Hebb’s postulate, to study the influence of the NO diffusion in the Hebbian learning. Considering that the postsynaptic neurons provide retrograde signals to the presynaptic neurons [1] we suggest the NO as a probable biological support to the Hebb’s law propounding a new mathematical formulation of that learning law, the diffusive Hebb’s law. We will present a study of the behavior of the diffusive Hebb’s law using a Diffusive Hebbian System (DHS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tao, H.W., Poo, M.-m.: Retrograde signaling at central synapses. PNAS 98(20), 11009–11015 (2001)
Brown, T.H., Kairiss, E.W., Keenan, C.L.: Hebbian Synapses: Biophysical Mechanisms and Algorithms. Annu. Rev. Neurosci. 13, 475–511 (1990)
Tanzi, E.: I fatti e la induzioni nell ’odierna istologia del sistema nervioso. Riv. Sper. Freniatr. Med. Leg. Alienazioni Ment. Soc.Ital. Psichiatria 19, 419–472 (1893)
Gluck, M.A., Granger, R.: Annu. Rev. Neurosci. 16, 667–706 (1993)
Hebb, D.O.: The organization of behaviour. Wiley and Sons, New York (1949)
Suárez Araujo, C.P.: Study and Reflections on the Functional and Organisational Role of Neuromessenger Nitric Oxide in Learning: An Artificial and Biological Approach. Computer Anticipatory Systems AIP 517, 296–307 (2000)
Fernández López, P., Suárez Araujo, C.P., García Báez, P., Sánchez Martín, G.: Diffusion Associative Network: Diffusive Hybrid Neuromodulation and Volume Learning. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 54–61. Springer, Heidelberg (2003)
Korneev, S.A., Straub, V., Kemenes, I., Korneeva, E.I., Ott, S.R., Benjamin, P.R., OShea, M.: Timed and Targeted Differential Regulation of Nitric Oxide Synthase (NOS) and Anti-NOS Genes by Reward Conditioning Leading to Long-Term Memory Formatio. J. Neurosci. 25(5), 1188–1192 (2005)
Suárez Araujo, C.P., Fernández López, P., García Báez, P.: Towards a Model of Volume Transmission in Biological and Artificial Neural Networks: A CAST Approach. In: Moreno-Díaz Jr., R., Buchberger, B., Freire, J.-L. (eds.) EUROCAST 2001. LNCS, vol. 2178, pp. 328–342. Springer, Heidelberg (2001)
Fernández López, P., Suárez Araujo, C.P., García Báez, P., Regidor García, J.: A Model of Nitric Oxide Diffusion based in Compartmental Systems (in press)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Araujo, C.P.S., López, P.F., Báez, P.G., García, J.R. (2005). Study of Nitric Oxide Effect in the Hebbian Learning: Towards a Diffusive Hebb’s Law. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_40
Download citation
DOI: https://doi.org/10.1007/11550822_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28752-0
Online ISBN: 978-3-540-28754-4
eBook Packages: Computer ScienceComputer Science (R0)