Abstract
Sensory data extracted by neurons is often noisy or ambiguous and a goal of low-level cortical areas is to build an efficient strategy extracting the relevant information. It is believed that this is implemented in cortical areas by elementary inferential computations dynamically extracting the most likely parameters corresponding to the sensory signal. We explore here a neuro-mimetic model of the feed-forward connections in the primary visual area (V1) solving this problem in the case where the signal may be idealized by a linear generative model using an over-complete dictionary of primitives. Relying on an efficiency criterion, we derive an algorithm as an approximate solution which provides a distributed probabilistic representation of input features and uses incremental greedy inference processes. This algorithm is similar to Matching Pursuit and mimics the parallel and event-based nature of neural computations. We show a simple implementation using a network of integrate-and-fire neurons using fast lateral interactions which transforms an analog signal into a list of spikes. Though simplistic, numerical simulations show that this Sparse Spike Coding strategy provides an efficient representation of natural images compared to classical computational methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Olshausen, B., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37, 3311–3325 (1998)
Perrinet, L., Samuelides, M., Thorpe, S.: Coding static natural images using spiking event times: do neurons cooperate? IEEE Transactions on Neural Networks, Special Issue on Temporal Coding for Neural Information Processing 15, 1164–1175 (2004), http://incm.cnrs-mrs.fr/perrinet/publi/perrinet03ieee.pdf
Lapicque, L.: Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. Journal of Physiology, Paris 9, 620–635 (1907)
Perrinet, L.: Feature detection using spikes: the greedy approach. Journal of Physiology, Paris (2004), http://incm.cnrs-mrs.fr/perrinet/publi/perrinet04tauc.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Perrinet, L. (2005). Efficient Source Detection Using Integrate-and-Fire Neurons. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_27
Download citation
DOI: https://doi.org/10.1007/11550822_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28752-0
Online ISBN: 978-3-540-28754-4
eBook Packages: Computer ScienceComputer Science (R0)