Nothing Special   »   [go: up one dir, main page]

Skip to main content

Structure Features for Content-Based Image Retrieval

  • Conference paper
Pattern Recognition (DAGM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3663))

Included in the following conference series:

Abstract

The geometric structure of an image exhibits fundamental information. Various structure-based feature extraction methods have been developed and successfully applied to image processing problems. In this paper we introduce a geometric structure-based feature generation method, called line-structure recognition (LSR) and apply it to content-based image retrieval. The algorithm is adapted from line segment coherences, which incorporate inter-relational structure knowledge encoded by hierarchical agglomerative clustering, resulting in illumination, scale and rotation robust features. We have conducted comprehensive tests and analyzed the results in detail. The results have been obtained from a subset of 6000 images taken from the Corel image database. Moreover, we compared the performance of LSR with Gabor wavelet features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A., Vailaya, A.: Image retrieval using color and shape. Pattern Recognition 29(8), 1233–1244 (1996)

    Article  Google Scholar 

  2. Brandt, S., Laaksonen, J., Oja, E.: Statistical shape features in content-based image retrieval. In: Proc. of 15th ICPR, Barcelona (2000)

    Google Scholar 

  3. Zhu, W., Levinson, S.: Edge orientation-based multi-view object recognition. In: International Conference on Pattern Recognition (ICPR), vol. 1, pp. 936–939 (2000)

    Google Scholar 

  4. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)

    Article  Google Scholar 

  5. Pope, A., Lowe, D.: Vista: A software environment for computer vision research. In: CVPR 1994, pp. 768–772 (1994)

    Google Scholar 

  6. Kovesi, P.D.: Edges are not just steps. In: Proceedings of the Fifth Asian Conference on Computer Vision, Melbourne, pp. 822–827 (2002)

    Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  8. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive integrated matching for picture LIbraries. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 947–963 (2001)

    Article  Google Scholar 

  9. Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1075–1088 (2003)

    Article  Google Scholar 

  10. Zhang, D.S., Wong, A., Indrawan, M., Lu., G.: Content-based image retrieval using gabor texture features. In: Proc. of First IEEE Pacific-Rim Conference on Multimedia (PCM 2000), Sydney, Australia, pp. 392–395 (2000)

    Google Scholar 

  11. Wolf, C., Jolion, J.M., Kropatsch, W., Bischof, H.: Content based image retrieval using interest points and texture features. In: Proceedings of the ICPR 2000. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  12. Tian, Q., Sebe, N., Loupias, E., Lew, M., Huang, T.: Content-based image retrieval using wavelet-based salient points. In: SPIE - Storage and Retrieval for Media Databases (EI28), San Jose, USA, pp. 425–436 (2001)

    Google Scholar 

  13. Gabor, D.: Theory of communication. J. IEE (London) 26, 429–457 (1946)

    Google Scholar 

  14. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Information Theory (1990)

    Google Scholar 

  15. Sebe, N., Lew, M., Huijsmans, N.: Towards optimal ranking metrics. IEEE Trans. on Pattern Analysis and Machine Intel (PAMI), 1132–1143 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brunner, G., Burkhardt, H. (2005). Structure Features for Content-Based Image Retrieval. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds) Pattern Recognition. DAGM 2005. Lecture Notes in Computer Science, vol 3663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550518_53

Download citation

  • DOI: https://doi.org/10.1007/11550518_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28703-2

  • Online ISBN: 978-3-540-31942-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics