Abstract
We introduce and discuss a new method for segmentation and classification of cells from 3D tissue probes. The anisotropic 3D volumetric data of fluorescent marked cell nuclei is recorded by a confocal laser scanning microscope (LSM). Voxel-wise gray scale features (see accompaning paper [1][2]) ), invariant towards 3D rotation of its neighborhood, are extracted from the original data by integrating over the 3D rotation group with non-linear kernels.
In an interactive process, support-vector machine models are trained for each cell type using user relevance feedback. With this reference database at hand, segmentation and classification can be achieved in one step, simply by classifying each voxel and performing a connected component labelling, automatically without further human interaction. This general approach easily allows adoption of other cell types or tissue structures just by adding new training samples and re-training the model. Experiments with datasets from chicken chorioallantoic membrane show encouraging results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ronneberger, O., Fehr, J., Burkhardt, H.: Voxel-wise gray scale invariants for simultaneous segmentation and classification. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 85–92. Springer, Heidelberg (2005)
Ronneberger, O., Fehr, J., Burkhardt, H.: Voxel-wise gray scale invariants for simultaneous segmentation and classification – theory and application to cell-nuclei in 3d volumetric data. Internal report 2/05, IIF-LMB, University Freiburg (2005)
Schulz-Mirbach, H.: Invariant features for gray scale images. In: Sagerer, G., Posch, S., Kummert, F. (eds.) DAGM - Symposium “Mustererkennung”, Bielefeld, Reihe Informatik aktuell, vol. 17, pp. 1–14. Springer, Heidelberg (1995)
Burkhardt, H., Siggelkow, S.: Invariant features in pattern recognition – fundamentals and applications. In: Kotropoulos, C., Pitas, I. (eds.) Nonlinear Model-Based Image/Video Processing and Analysis, pp. 269–307. John Wiley & Sons, Chichester (2001)
Ronneberger, O., Burkhardt, H., Schultz, E.: General-purpose Object Recognition in 3D Volume Data Sets using Gray-Scale Invariants – Classification of Airborne Pollen-Grains Recorded with a Confocal Laser Scanning Microscope. In: Proceedings of the International Conference on Pattern Recognition, Quebec, Canada (2002)
Ronneberger, O., Schultz, E., Burkhardt, H.: Automated Pollen Recognition using 3D Volume Images from Fluorescence Microscopy. Aerobiologia 18, 107–115 (2002)
Vapnik, V.N.: The nature of statistical learning theory. Springer, Heidelberg (1995)
Ronneberger, O.: Libsvmtl - a support vector machine template library (2004), Download at http://lmb.informatik.uni-freiburg.de/lmbsoft/libsvmtl/
Kurz, H., et al.: Pericytes in experimental mda-mb231 tumor angiogenesis. Histochem. Cell. Biol. 117, 527–534 (2002)
Kurz, H., et al.: Automatic classification of cell nuclei and cells during embryonic vascular development. Ann. Anat. 187(suppl.), 130 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fehr, J., Ronneberger, O., Kurz, H., Burkhardt, H. (2005). Self-learning Segmentation and Classification of Cell-Nuclei in 3D Volumetric Data Using Voxel-Wise Gray Scale Invariants. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds) Pattern Recognition. DAGM 2005. Lecture Notes in Computer Science, vol 3663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550518_47
Download citation
DOI: https://doi.org/10.1007/11550518_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28703-2
Online ISBN: 978-3-540-31942-9
eBook Packages: Computer ScienceComputer Science (R0)