Nothing Special   »   [go: up one dir, main page]

Skip to main content

Illumination Invariant Color Texture Analysis Based on Sum- and Difference-Histograms

  • Conference paper
Pattern Recognition (DAGM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3663))

Included in the following conference series:

Abstract

Color texture algorithms have been under investigation for quite a few years now. However, the results of these algorithms are still under considerable influence of the illumination conditions under which the images were captured. It is strongly desireable to reduce the influence of illumination as much as possible to obtain stable and satisfying classification results even under difficult imaging conditions, as they can occur e.g. in medical applications like endoscopy. In this paper we present the analysis of a well-known texture analysis algorithm, namely the sum- and difference-histogram features, with respect to illumination changes. Based on this analysis, we propose a novel set of features factoring out the illumination influence from the majority of the original features. We conclude our paper with a quantitative, experimental evaluation on artificial and real image samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnard, K.: Modeling scene illumination colour for computer vision and image reproduction: A survery of computational approaches. Technical report, Simon Fraser University, Vancouver, B.C., Canada (1998)

    Google Scholar 

  2. de Wouwer, G.V., Scheunders, P., Livens, S., Dyck, D.V.: Wavelet correlation signatures for color texture characerization. Pat. Rec. 32(3), 443–451 (1999)

    Article  Google Scholar 

  3. Drimbarean, A., Whelan, P.: Experiments in colour texture analysis. Pat. Rec. Letters 22, 1161–1167 (2001)

    Article  MATH  Google Scholar 

  4. Finlayson, G., Chatterjee, S., Funt, B.: Color angular indexing. In: ECCV (2), pp. 16–27 (1996)

    Google Scholar 

  5. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cyb. SMC-3(6), 610–621 (1973)

    Article  Google Scholar 

  6. Healey, G., Slater, D.: Computing illumination-invariant descriptors of spatially filtered color image regions. IEEE Trans. Image Process. 6(7), 1002–1013 (1997)

    Article  Google Scholar 

  7. Jain, A., Healey, G.: A Multiscale Representation Including Opponent Color Features for Texture Recognition. IEEE Trans. Image Process. 7(1), 124–128 (1998)

    Article  Google Scholar 

  8. Funt, J.H.B., Drew, M.: Separating a color signal into illumination and surface reflectance components: Theory and applications. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 966–977 (1990)

    Article  Google Scholar 

  9. Lakmann, R.: Statistische Modellierung von Farbtexturen. PhD thesis, Universität Koblenz-Landau, Koblenz (1998)

    Google Scholar 

  10. Münzenmayer, C., Volk, H., Küblbeck, C., Spinnler, K., Wittenberg, T.: Multispectral Texture Analysis using Interplane Sum- and Difference-Histograms. In: Gool, L.V. (ed.) Pattern Recognition - Proceedings of the 24th DAGM Symposium Zurich, Switzerland, September 2002, pp. 25–31. Springer, Berlin (2002)

    Google Scholar 

  11. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  12. Palm, C.: Integrative Auswertung von Farbe und Textur. PhD thesis, RWTH Aachen, Osnabrück (2003)

    Google Scholar 

  13. Paschos, G.: Perceptually Uniform Color Spaces for Color Texture Analysis: An Empirical Evaluation. IEEE Trans. Image Process. 10(6), 932–937 (2001)

    Article  MATH  Google Scholar 

  14. Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)

    Article  Google Scholar 

  15. Tan, T., Kittler, J.: Colour texture analysis using colour histogram. IEE Proc.-Vis. Image Signal Process. 141, 260–266 (1994)

    Google Scholar 

  16. Unser, M.: Sum and difference histograms for texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(1), 118–125 (1986)

    Article  Google Scholar 

  17. Vision, M.M.L., Group, M.: Vistex vision texture database (1995), http://www-white.media.mit.edu/vismod/imagery/visiontexture

  18. Vora, P., Farrell, J., Tietz, J., Brainard, D.: Linear models for digital cameras. In: Proc. of the 1997 IS&T 50th Annual Conference, Cambridge, MA, pp. 377–382 (1997)

    Google Scholar 

  19. Wandell, B.: The synthesis and analysis of color images. IEEE Trans. Pattern Anal. Mach. Intell. 9(1), 2–13 (1987)

    Article  Google Scholar 

  20. Wanderley, J.F.C., Fisher, M.H.: Multiscale color invariants based on the human visual system. IEEE Trans. Image Process. 10(11), 1630–1638 (2001)

    Article  MATH  Google Scholar 

  21. Wang, L., Healey, G.: Using zernike moments for the illumination and geometry invariant classification of multispectral texture. IEEE Trans. Image Process. 7(2), 196–203 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Münzenmayer, C., Wilharm, S., Hornegger, J., Wittenberg, T. (2005). Illumination Invariant Color Texture Analysis Based on Sum- and Difference-Histograms. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds) Pattern Recognition. DAGM 2005. Lecture Notes in Computer Science, vol 3663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550518_3

Download citation

  • DOI: https://doi.org/10.1007/11550518_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28703-2

  • Online ISBN: 978-3-540-31942-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics