Nothing Special   »   [go: up one dir, main page]

Skip to main content

Projective Model for Central Catadioptric Cameras Using Clifford Algebra

  • Conference paper
Pattern Recognition (DAGM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3663))

Included in the following conference series:

Abstract

A new method for describing the equivalence of catadioptric and stereographic projections is presented. This method produces a simple projection usable in all central catadioptric systems. A projective model for the sphere is constructed in such a way that it allows the effective use of Clifford algebra in the description of the geometrical entities on the spherical surface.

This work has been supported by DFG grant So-320/2-3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, S., Nayar, S.: A theory of catadioptric image formation. In: Proc. Int. Conf. on Computer Vision, pp. 35–42 (1998)

    Google Scholar 

  2. Baker, S., Nayar, S.: A theory of single view-point catadioptric image formation. International Journal of Computer Vision 35, 175–196 (1999)

    Article  Google Scholar 

  3. Bayro-Corrochano, E., López-Franco, C.: Omnidirectional vision: unified model using conformal geometry. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 536–548. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Cameron, J.I.: Applications of Geometric Algebra, first year report. Signal Processing Laboratory, Department of Engineering. University of Cambridge, Cambridge (2004)

    Google Scholar 

  5. Geyer, C., Daniilidis, K.: Catadioptric projective geometry. International Journal of Computer Vision 45, 223–243 (2001)

    Article  MATH  Google Scholar 

  6. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  7. Li, H., Hestenes, D., Rockwood, A.: Spherical conformal geometry with Geometric algebra. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 61–76. Springer, Heidelberg (2001)

    Google Scholar 

  8. McDonald, B.R.: Geometric Algebra over Local Rings. Marcel Dekker, Inc., New York (1976)

    MATH  Google Scholar 

  9. Penrose, R., Rindler, W.: Spinors & Space-Time 1. Cambridge University Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  10. Perwass, C., Hildenbrand, D.: Aspects of Geometric Algebra in Euclidean, Projective and Conformal Space. Technical Report Nr.0308, University of Kiel (2002)

    Google Scholar 

  11. Rosenhahn, B., Sommer, G.: Pose estimation in conformal geometric algebra, Part II: Real-time pose estimation using extended feature concepts. Journal of Mathematical Imaging and Vision 22, 49–70 (2005)

    Article  MathSciNet  Google Scholar 

  12. Rosenhahn, B., Perwass, C., Sommer, G.: Pose Estimation of free-form contours. Int. Journal of Computer Vision 62, 267–289 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tolvanen, A., Perwass, C., Sommer, G. (2005). Projective Model for Central Catadioptric Cameras Using Clifford Algebra. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds) Pattern Recognition. DAGM 2005. Lecture Notes in Computer Science, vol 3663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550518_24

Download citation

  • DOI: https://doi.org/10.1007/11550518_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28703-2

  • Online ISBN: 978-3-540-31942-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics