Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Role of Non-linearity for Evolved Multifunctional Robot Behavior

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3637))

Included in the following conference series:

Abstract

In this paper the role of non-linear control structures for the development of multifunctional robot behavior in a self-organized way is discussed. This discussion is based on experiments where combinations of two behavioral tasks are incrementally evolved. The evolutionary experiments develop recurrent neural networks of general type in a systematically way. The resulting networks are investigated according to the underlying structure-function relations. These investigations point to necessary properties providing multifunctionality, scalability, and open-ended evolutionary strategies in Evolutionary Robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beer, R.D.: An dynamical systems perspective on agent-environment interaction. Artificial Intelligence 72, 173–215 (1995)

    Article  Google Scholar 

  2. Beer, R.D.: The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11, 209–243 (2003)

    Article  Google Scholar 

  3. Brooks, R.A.: Artificial life and real robots. In: Proceedings of the First European Conference on Artificial Life, pp. 3–10. MIT Press, Cambridge (1992)

    Google Scholar 

  4. Clark, A.: Being There: Putting Brain, Body and World Together Again. MIT Press, Cambridge (1997)

    Google Scholar 

  5. Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: Evolving elemantary robotic units able to self-assemble and selfreproduce. Connection Science 16, 227–248 (2004)

    Article  Google Scholar 

  6. Hülse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved neuro-controllers for autonomous robots. Connection Science 16, 249–266 (2004)

    Article  Google Scholar 

  7. Kelso, S.: Dynamic Patterns. MIT Press, Cambridge (1995)

    Google Scholar 

  8. Michel, O.: Khepera Simulator, Package version 2.0. Freeware mobile robot simulator written at the University of Nice Sophia-Antipolis by Oliver Michel, Downloadable from the World Wide Web at http://wwwi3s.unice.fr/~om/khep-sim.html

  9. Mondada, F., Franzi, E., Ienne, P.: Mobile robots miniturization: A tool for investigation in control algorithms. In: Proc. of ISER 1993, Kyoto(1993)

    Google Scholar 

  10. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  11. Pasemann, F.: Characteristics of periodic attractors in neural ring networks. Neural Networks 8, 421–429 (1995)

    Article  Google Scholar 

  12. Pasemann, F.: Structure and dynamics of recurrent neuro-modules. Theory in Biosciences 117, 1–17 (1998)

    Google Scholar 

  13. Pasemann, F., Steinmetz, U., Hülse, M., Lara, B.: Robot control and the evolution of modular neurodynamics. Theory in Biosciences 120, 311–326 (2001)

    Google Scholar 

  14. Walker, J., Garrett, S., Wilson, M.: Evolving controllers for real robots: A survey of the literature. Adaptive Behavior 11, 179–203 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hülse, M., Wischmann, S., Pasemann, F. (2005). The Role of Non-linearity for Evolved Multifunctional Robot Behavior. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds) Evolvable Systems: From Biology to Hardware. ICES 2005. Lecture Notes in Computer Science, vol 3637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549703_11

Download citation

  • DOI: https://doi.org/10.1007/11549703_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28736-0

  • Online ISBN: 978-3-540-28737-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics