Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Semantics of Coinductive Types in Martin-Löf Type Theory

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3629))

Included in the following conference series:

  • 550 Accesses

Abstract

There are several approaches to the problem of giving a categorical semantics to Martin-Löf type theory with dependent sums and products and extensional equality types. The most established one relies on the notion of a type-category (or category with attributes) with \({\it \Sigma}\) and \({\it \Pi}\) types. We extend such a semantics by introducing coinductive types both on the syntactic level and in a type-category. Soundness of the semantics is preserved.

As an example of such a category, we prove that the type-category built over a locally cartesian closed category \({\mathcal C}\) admits coinductive types whenever \({\mathcal C}\) has final coalgebras for all polynomial functors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbott, M., Altenkirch, T., Ghani, N.: Representing strictly positive types. Presented at APPSEM annual meeting, invited for submission to Theoretical Computer Science (2004)

    Google Scholar 

  2. Aczel, P.: Non-Well-Founded Sets. In: Center for the Study of Language and Information. CSLI Lecture Notes, vol. 14. Stanford University, Stanford (1988)

    Google Scholar 

  3. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative theories: a coalgebraic view. Theoretical Computer Science 300, 1–45 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Altenkirch, T.: Extensional equality in intensional type theory. In: 14th Symposium on Logic in Computer Science (LICS 1999), pp. 412–421. IEEE, Los Alamitos (1999)

    Google Scholar 

  5. Barr, M.: Terminal coalgebras for endofunctors on sets (1999), Available from ftp://www.math.mcgill.ca/pub/barr/trmclgps.zip

  6. Bénabou, J.: Fibered categories and the foundations of naive category theory. J. Symbolic Logic 50(1), 10–37 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cartmell, J.: Generalised algebraic theories and contextual categories. Ann. Pure Appl. Logic 32(3), 209–243 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)

    Google Scholar 

  9. Gaspes, V.: Infinite objects in type theory (1997)

    Google Scholar 

  10. Hallnäs, L.: On the syntax of infinite objects: an extension of Martin-Löf’s theory of expressions. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 94–104. Springer, Heidelberg (1990)

    Google Scholar 

  11. Hofmann, M.: On the interpretation of type theory in locally cartesian closed categories. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 427–441. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  12. Jacobs, B.: Categorical logic and type theory. Studies in Logic and the Foundations of Mathematics, vol. 141. North-Holland Publishing Co., Amsterdam (1999)

    MATH  Google Scholar 

  13. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bulletin of the EATCS 62, 222–259 (1996)

    Google Scholar 

  14. Lindström, I.: A construction of non-well-founded sets within Martin-Löf’s type theory. Journal of Symbolic Logic 54(1), 57–64 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Martin-Löf, P.: Intuitionistic type theory. Studies in Proof Theory. Lecture Notes, vol. 1. Bibliopolis, Naples (1984)

    MATH  Google Scholar 

  16. Martin-Löf, P.: Mathematics of infinity. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 146–197. Springer, Heidelberg (1990)

    Google Scholar 

  17. Mendler, N.P., Panangaden, P., Constable, R.L.: Infinite objects in type theory. In: Symposium on Logic in Computer Science (LICS 1986), pp. 249–257. IEEE Computer Society Press, Los Alamitos (1986)

    Google Scholar 

  18. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s type theory. International Series of Monographs on Computer Science, vol. 7. The Clarendon Press/Oxford University Press (1990)

    Google Scholar 

  19. Pitts, A.M.: Categorical logic. Handbook of logic in computer science, vol. 5, pp. 39–128. Oxford Sci. Publ./Oxford Univ. Press (2000)

    Google Scholar 

  20. Seely, R.A.G.: Locally cartesian closed categories and type theory. Math. Proc. Cambridge Philos. Soc. 95(1), 33–48 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Streicher, T.: Semantics of type theory. Progress in Theoretical Computer Science. Birkhäuser (1991); Correctness, completeness and independence results

    Google Scholar 

  22. Turi, D., Rutten, J.: On the foundations of final coalgebra semantics: non-well-founded sets, partial orders, metric spaces. Mathematical Structures in Computer Science 8(5), 481–540 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. van den Berg, B., De Marchi, F.: Non-well-founded trees in categories, Available online at http://arxiv.org/abs/math.CT/0409158 (submitted)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Marchi, F. (2005). On the Semantics of Coinductive Types in Martin-Löf Type Theory. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds) Algebra and Coalgebra in Computer Science. CALCO 2005. Lecture Notes in Computer Science, vol 3629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548133_8

Download citation

  • DOI: https://doi.org/10.1007/11548133_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28620-2

  • Online ISBN: 978-3-540-31876-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics