Nothing Special   »   [go: up one dir, main page]

Skip to main content

Behavioral Pattern Identification Through Rough Set Modelling

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3642))

Abstract

This paper introduces an approach to behavioral pattern identification as a part of a study of temporal patterns in complex dynamical systems. Rough set theory introduced by Zdzisław Pawlak during the early 1980s provides the foundation for the construction of classifiers relative to what are known as temporal pattern tables. It is quite remarkable that temporal patterns can be treated as features that make it possible to approximate complex concepts. This article introduces what are known as behavior graphs. Temporal concepts approximated by approximate reasoning schemes become nodes in behavioral graphs. In addition, we discuss some rough set tools for perception modeling that are developed for a system for modelling networks of classifiers. Such networks make it possible to recognize behavioral patterns of objects changing over time. They are constructed using an ontology of concepts delivered by experts that engage in approximate reasoning on concepts embedded in such an ontology. This article also includes examples based on data from a vehicular traffic simulator useful in the identification of behavioral patterns by drivers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Yam, Y.: Dynamiocs of Complex Systems. Addison Wesley, Reading (1997)

    Google Scholar 

  2. Bazan, J., Skowron, A.: Classifiers based on approximate reasoning schemes. In: Dunin-Keplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security, and Rescue Tasks in Multiagent Systems MSRAS. Advances in Soft Computing, pp. 191–202. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bazan, J., Nguyen, S.H., Nguyen, H.S., Skowron, A.: Rough set methods in approximation of hierarchical concepts. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 346–355. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Birattari, M., Di Caro, G., Dorigo, M.: Toward the formal foundation of ant programming. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 188–201. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. From Natural to Artificial Systems. Oxford University Press, UK (1999)

    MATH  Google Scholar 

  7. Fahle, M., Poggio, T. (eds.): Perceptual Learning. The MIT Press, Cambridge (2002)

    Google Scholar 

  8. Harnad, S. (ed.): Categorical Perception. The Groundwork of cognition. Cambridge University Press, UK (1987)

    Google Scholar 

  9. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Heidelberg (2004)

    Google Scholar 

  10. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. In: Volume 9 of System Theory, Knowledge Engineering and Problem Solving, Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  11. Peters, J.F.: Rough Ethology: Towards a Biologically-Inspired Study of Collective Behavior in Intelligent Systems with Approximation Spaces. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 153–174. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Peters, J.F.: Approximation spaces for hierarchical intelligent behavioral system models. In: Dunin-Keplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, pp. 13–30. Physica, Heidelberg (2004)

    Google Scholar 

  13. Peters, J.F., Henry, C., Ramanna, S.: Rough Ethograms: Study of Intelligent System Behavior. In: New Trends in Intelligent Information Processing and Web Mining (IIS 2005), Gdańsk, Poland, June 13-16 (2005)

    Google Scholar 

  14. Peters, J.F., Henry, C., Ramanna, S.: Reinforcement learning with pattern-based rewards. In: Computational Intelligence (CI), Calgary, Alberta, Canada (July 2005) (to appear)

    Google Scholar 

  15. Luck, M., McBurney, P.: Preist, Ch.: Agent Technology: Enabling Next Generation. A Roadmap for Agent Based Computing. Agent Link (2003)

    Google Scholar 

  16. Road simulator Homepage at http://logic.mimuw.edu.pl/~bazan/simulator

  17. RSES Homepage at http://logic.mimuw.edu.pl/~rses

  18. Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.): ANTS 2004. LNCS, vol. 3172. Springer, Heidelberg (2004)

    Google Scholar 

  19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)

    Google Scholar 

  20. Urmson, C., et al.: High speed navigation of unrehearsed terrain: Red team technology for Grand Challenge 2004. Report CMU-RI-TR-04-37, The Robotics Institute, Carnegie Mellon University (2004)

    Google Scholar 

  21. Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions. AI Magazine 22(1), 73–84 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazan, J.G., Peters, J.F., Skowron, A. (2005). Behavioral Pattern Identification Through Rough Set Modelling. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W., Hu, X. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548706_73

Download citation

  • DOI: https://doi.org/10.1007/11548706_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28660-8

  • Online ISBN: 978-3-540-31824-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics