Nothing Special   »   [go: up one dir, main page]

Skip to main content

Guarded Open Answer Set Programming

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2005)

Abstract

Open answer set programming (OASP) is an extension of answer set programming where one may ground a program with an arbitrary superset of the program’s constants. We define a fixed point logic (FPL) extension of Clark’s completion such that open answer sets correspond to models of FPL formulas and identify a syntactic subclass of programs, called (loosely) guarded programs. Whereas reasoning with general programs in OASP is undecidable, the FPL translation of (loosely) guarded programs falls in the decidable (loosely) guarded fixed point logic (μ(L)GF).

Moreover, we reduce normal closed ASP to loosely guarded OASP, enabling a characterization of an answer set semantics by μLGF formulas. Finally, we relate guarded OASP to Datalog LITE, thus linking an answer set semantics to a semantics based on fixed point models of extended stratified Datalog programs. From this correspondence, we deduce 2-EXPTIME-completeness of satisfiability checking w.r.t. (loosely) guarded programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  2. Andréka, H., Németi, I., Van Benthem, J.: Modal Languages and Bounded Fragments of Predicate Logic. J. of Philosophical Logic 27(3), 217–274 (1998)

    Article  MATH  Google Scholar 

  3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  4. Van Benthem, J.: Dynamic Bits and Pieces. ILLC research report. University of Amsterdam (1997)

    Google Scholar 

  5. Chandra, A.K., Harel, D.: Horn Clauses and the Fixpoint Query Hierarchy. In: Proc. of PODS 1982, pp. 158–163. ACM Press, New York (1982)

    Google Scholar 

  6. Clark, K.L.: Negation as Failure. In: Readings in Nonmonotonic Reasoning, pp. 311–325. Kaufmann, San Francisco (1987)

    Google Scholar 

  7. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic Programming. ACM Comput. Surv. 33(3), 374–425 (2001)

    Article  Google Scholar 

  8. Emerson, E.A., Clarke, E.M.: Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons. Sciene of Computer Programming 2(3), 241–266 (1982)

    Article  MATH  Google Scholar 

  9. Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 177–191. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Proc. of ICLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  11. Gelfond, M., Przymusinska, H.: Reasoning in Open Domains. In: Logic Programming and Non-Monotonic Reasoning, pp. 397–413. MIT Press, Cambridge (1993)

    Google Scholar 

  12. Gottlob, G., Grädel, E., Veith, H.: Datalog LITE: A deductive query language with linear time model checking. ACM Transactions on Computational Logic 3(1), 1–35 (2002)

    Article  Google Scholar 

  13. Grädel, E.: On the Restraining Power of Guards. Journal of Symbolic Logic 64(4), 1719–1742 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grädel, E., Walukiewicz, I.: Guarded Fixed Point Logic. In: Proc. of LICS 1999, pp. 45–54. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  15. Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Guarded Open Answer Set Programming. Technical report, http://tinf2.vub.ac.be/~sheymans/tech/guarded-oasp.ps.gz

  16. Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Semantic Web Reasoning with Conceptual Logic Programs. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 113–127. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Nonmonotonic Ontological and Rule-Based Reasoning with Extended Conceptual Logic Programs. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 392–407. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Kozen, D.: Results on the Propositional μ-calculus. Theor. Comput. Sci. 27, 333–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lee, J., Lifschitz, V.: Loop Formulas for Disjunctive Logic Programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Lifschitz, V., Pearce, D., Valverde, A.: Strongly Equivalent Logic Programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)

    Article  MathSciNet  Google Scholar 

  21. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In: Proc. of 18th National Conference on Artificial Intelligence, pp. 112–117. AAAI, Menlo Park (2002)

    Google Scholar 

  22. Syrjänen, T.: Omega-restricted Logic Programs. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 267–279. Springer, Heidelberg (2001)

    Google Scholar 

  23. Syrjänen, T., Niemelä, I.: The smodels System. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 434–438. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heymans, S., Van Nieuwenborgh, D., Vermeir, D. (2005). Guarded Open Answer Set Programming. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2005. Lecture Notes in Computer Science(), vol 3662. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11546207_8

Download citation

  • DOI: https://doi.org/10.1007/11546207_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28538-0

  • Online ISBN: 978-3-540-31827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics