Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Effective Method for Locally Neighborhood Graphs Updating

  • Conference paper
Database and Expert Systems Applications (DEXA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3588))

Included in the following conference series:

Abstract

Neighborhood graphs are an effective and very widespread technique in several fields. But, in spite of the neighborhood graphs interest, their construction algorithms suffer from a very high complexity what prevents their implementation for great data volumes processing applications. With this high complexity, the update task is also affected. These structures constitute actually a possible representation of the point location problem in a multidimensional space. The point location on an axis can be solved by a binary research. This same problem in the plan can be solved by using a voronoi diagram, but when dimension becomes higher, the location becomes more complex and difficult to manage. We propose in this paper an effective method for point location in a multidimensional space with an aim of effectively and quickly updating neighborhood graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, E.: The irises of the gaspé peninsula. Bulletin of the American Iris Society 59, 2–5 (1935)

    Google Scholar 

  2. Bei, C.-D., Gray, R.M.: An improvement of the minimum distortion encoding algorithm for vector quantization. IEEE Transactions on Communications 33, 1132–1133 (1985)

    Article  Google Scholar 

  3. Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.-P.: A cost model for nearest neighbor search in high-dimensional data space. In: PODS, pp. 78–86 (1997)

    Google Scholar 

  4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees, pp. 43–49. Wadsworth International Group, Belmont (1984)

    MATH  Google Scholar 

  5. Cost, R.S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10, 57–78 (1993)

    Google Scholar 

  6. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classication. IEEE Trans. Inform. Theory 13, 57–67 (1967)

    Article  Google Scholar 

  7. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)

    Article  Google Scholar 

  8. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: An overview. In: Advances in Knowledge Discovery and Data Mining, pp. 1–34 (1996)

    Google Scholar 

  9. Fisher, R.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179–188 (1936)

    Google Scholar 

  10. Flickner, M., Sawhney, H.S., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: The qbic system. IEEE Computer 28(9), 23–32 (1995)

    Google Scholar 

  11. Friedman, J.H., Baskett, F., Shustek, L.J.: An algorithm for finding nearest neighbors. IEEE Trans. Computers 24(10), 1000–1006 (1975)

    Article  MATH  Google Scholar 

  12. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Systematic zoology 18, 259–278 (1969)

    Article  Google Scholar 

  13. Gersho, A., Gray, R.M.: Vector quantization and signal compression. Kluwer Academic, Boston (1991)

    Google Scholar 

  14. Guan, L., Kamel, M.: Equal-average hyperplane partitioning method for vector quantization of image data. Pattern Recognition Letters 13(10), 693–699 (1992)

    Article  Google Scholar 

  15. Hettich, S., Blake, C., Merz, C.: Uci repository of machine learning databases (1998)

    Google Scholar 

  16. Katajainen, J.: The region approach for computing relative neighborhood graphs in the lp metric. Computing 40, 147–161 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lee, C.-H., Chen, L.H.: Fast closest codeword search algorithm for vector quantisation. In: IEE Proc.-Vis. Image Signal Process, vol. 141, pp. 143–148 (1994)

    Google Scholar 

  18. Lin, K.-I., Jagadish, H.V., Faloutsos, C.: The tv-tree: An index structure for high-dimensional data. VLDB J. 3(4), 517–542 (1994)

    Article  Google Scholar 

  19. Preparata, F., Shamos, M.I.: Computationnal Geometry-Introduction. Springer, Heidelberg (1985)

    Google Scholar 

  20. Smith, W.D.: Studies in computational geometry motivated by mesh generation. PhD thesis, Princeton University (1989)

    Google Scholar 

  21. Toussaint, G.T.: The relative neighborhood graphs in a finite planar set. Pattern recognition 12, 261–268 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Toussaint, G.T.: Some insolved problems on proximity graphs. In: Dearholt, D.W., Harrary, F. (eds.) Proceeding of the first workshop on proximity graphs. Memoranda in computer and cognitive science MCCS-91-224. Computing research laboratory. New Mexico state university Las Cruces (1991)

    Google Scholar 

  23. White, D.A., Jain, R.: Similarity indexing: Algorithms and performance. In: Storage and Retrieval for Image and Video Databases (SPIE), pp. 62–73 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hacid, H., Zighed, A.D. (2005). An Effective Method for Locally Neighborhood Graphs Updating. In: Andersen, K.V., Debenham, J., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2005. Lecture Notes in Computer Science, vol 3588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11546924_91

Download citation

  • DOI: https://doi.org/10.1007/11546924_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28566-3

  • Online ISBN: 978-3-540-31729-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics