Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Method for Gene Functional Prediction Based on Homologous Expression Profile

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3614))

Included in the following conference series:

  • 1348 Accesses

Abstract

It is a project with significant challenge to predict functions of genes in the post-genomics era. Most function annotation systems is available to predict functions of part genes, but the rate of annotation is very low and a large number of genes can not be annotated, what’s more, the measure of credibility isn’t quite sure. Aiming at the problem, we address the new concept of functional expression profile using knowledge system existed, and consider the method of gene cluster mapping associated with hub genes to predict functions of genes which are not still annotated based on the association between gene expression and gene function. At last we applied the method to colon data set. The results implied the prediction efficiency and credibility have been improved significantly by the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hieter, P., Boguski, M.: Functional genomics: It’s all how you read it. Science 278, 601–602 (1997)

    Article  Google Scholar 

  2. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000)

    Article  Google Scholar 

  3. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: GenBank. Nucleic Acids Res. 31, 23–27 (2003)

    Article  Google Scholar 

  4. Haiyuan, Y., Nicholas, M., Luscombe, N.M.: Annotation Transfer Between Genomes: Protein-Protein Interologs and Protein-DNA Regulogs. Genome Research 14, 1107–1118

    Google Scholar 

  5. Karp, P.D.: Pathway databases: a case study in computational symbolic theories. Science 293, 2040–2044 (2001)

    Article  Google Scholar 

  6. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95, 14863–14868 (1998)

    Article  Google Scholar 

  7. Watts, D.: Networks, dynamics and the small world phenomenon. American Journal of Sociology 105, 493–527 (1999)

    Article  Google Scholar 

  8. Bornholdt, S., Schuster, H.: Handbook of Graphs and Networks: from Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    Google Scholar 

  9. Rouse, R., Hardiman, G.: Microarray technology - an intellectual property etrospective. Pharmacogenomics 4, 623–632 (2003)

    Article  Google Scholar 

  10. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96, 6745–6750 (1999)

    Article  Google Scholar 

  11. Kuramochi, M., Karypis, G.: Gene Classification using Expression Profiles: A Feasibility Study. In: 2nd IEEE International Symposium on ioinformatics and Bioengineering (BIBE 2001), pp. 4–6 (2001)

    Google Scholar 

  12. Landgrebe, J., Wurst, W., Welzl, G.: Permutation-validated principal components analysis of microarray data. Genome Biol. 3, RESEARCH0019 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lv, S., Wang, Q., Zhang, G., Wen, F., Wang, Z., Li, X. (2005). A New Method for Gene Functional Prediction Based on Homologous Expression Profile. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11540007_104

Download citation

  • DOI: https://doi.org/10.1007/11540007_104

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28331-7

  • Online ISBN: 978-3-540-31828-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics