Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Multiple Eigenspaces Constructing Method and Its Application to Face Recognition

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3611))

Included in the following conference series:

Abstract

The well-known eigenface method uses a single eigenspace to recognize faces. However, it is not enough to represent face images with large variations, such as illumination and pose variations. To overcome this disadvantage, many researchers have introduced multiple eigenspaces into face recognition field. But most of these methods require that both the number of eignspaces and dimensionality of the PCA subspaces are a priori given. In this paper, a novel self-organizing method to build multiple, low-dinensinal eigenspaces from a set of training images is proposed. By eigenspace-growing in terms of low-dimensional eigenspaces, it completes clustering images systematically and robustly. Then each cluster is used to construct an eigenspace. After all these eigenspaces have been grown, a selection procedure eigenspace-selection is used to select the ultimate resulting set of eigenspaces as an effective representation of the training images. Then based on these eigenspaces, a framework combined with neural network is used to complete face recognition under variable poses and the experimental result shows that our framework can complete face recognition with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: a Literature Survey. ACM Computing Surveys 35, 399–458 (2003)

    Article  Google Scholar 

  2. Brunelli, R., Poggio, T.: Face Recognition: Features Versus Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 1042–1052 (1993)

    Article  Google Scholar 

  3. Laurenz, W., Jean-Marc, F., Norbert, K., Christoph, v.d.M.: Face Recognition by Elastic Bunch Graph Matching. d 19, 775–779 (1997)

    Google Scholar 

  4. Edwards, G.J., Cootes, T.F., Taylor, C.J.: Face Recognition Using Active Appearance Models. In: Proceedings of the 5th European Conference on Computer Vision, Freeburg, Germany, vol. 2, pp. 581–595 (1998)

    Google Scholar 

  5. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  6. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET Database and Evaluation Procedure for Face-recognition Algorithms. Image and Vision Computing 16, 295–306 (1998)

    Article  Google Scholar 

  7. Pentland, A., Moghaddam, B., Starner, T.: View-based and Modular Eigenspaces for Face Recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, pp. 21–23 (1994)

    Google Scholar 

  8. Huang, F.J., Zhou, Z.-H., Zhang, H.-J., Chen, T.: Pose Invariant Face Recognition. In: Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, pp. 245–250 (2000)

    Google Scholar 

  9. Li, W.-J., Wang, C.-J., Xu, D.-X., Chen, S.-F.: Illumination Invariant Face Recognition Based on Neural Network Ensemble. In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004), Boca Raton, Florida, pp. 486–490 (2004)

    Google Scholar 

  10. Li, W.-J., Wang, C.-J., Xu, D.-X., Luo, B., Chen, Z.-Q.: A Study on Illumination Invariant Face Recognition Methods Based on Multiple Eigenspaces. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 131–136. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Kim, H.-C., Kim, D., Bang, S.Y.: Face Recognition Using the Mixture-of-eigenfaces Method. Pattern Recognition Letters 23, 1549–1558 (2002)

    Article  MATH  Google Scholar 

  12. Leonardis, A., Bischof, H., Maver, J.: Multiple Eigenspaces. Pattern Recognition 35, 2613–2627 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, WJ., Luo, B., Wang, CJ., Zhong, XP., Chen, ZQ. (2005). A Multiple Eigenspaces Constructing Method and Its Application to Face Recognition. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539117_9

Download citation

  • DOI: https://doi.org/10.1007/11539117_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28325-6

  • Online ISBN: 978-3-540-31858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics