Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Chaotic Model of Hippocampus-Neocortex

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3610))

Included in the following conference series:

Abstract

To realize mutual association function, we propose a hippoca- mpus-neocortex model with multi-layered chaotic neural network (MCNN). The model is based on Ito etal.’s hippocampus-cortex model (2000), which is able to recall temporal patterns, and form long-term memory. The MCNN consists of plural chaotic neural networks (CNNs), whose each CNN layer is a classical association model proposed by Aihara. MCNN realizes mutual association using incremental and relational learning between layers, and it is introduced into CA3 of hippocampus. This chaotic hippocampus-neocortex model intends to retrieve relative multiple time series patterns which are stored (experienced) before when one common pattern is represented. Computer simulations verified the efficiency of proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Milner, B., Corkin, S., Teuber, H.L.: Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H. M. Neuropsychologia 6, 317–338 (1968)

    Google Scholar 

  2. Hampson, R.E., Simeral, J.D., Deadwyler, S.A.: Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402, 610–614 (1999)

    Article  Google Scholar 

  3. Fortin, N.J., Wright, S.P., Eichenbaum, H.: Recollection-like memory retrieval in rats dependent on the hippocampus. Nature 431, 188–191 (2004)

    Article  Google Scholar 

  4. Remondes, M., Schuman, E.M.: Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature 431, 699–703 (2004)

    Article  Google Scholar 

  5. Ito, M., Kuroiwa, J., Miyake, S.: A model of hippocampus-neocortex for episodic memory. In: The 5th Inter. Conf. on Neural Inf. Process, vol. 1P-16, pp. 431–434 (1998)

    Google Scholar 

  6. Ito, M., Kuroiwa, J., Miyake, S.: A neural network model of memory systems using hippocampus. The Tran. of the IEICE J82-D-II, 276–286 (1999) (in Japanese)

    Google Scholar 

  7. Ito, M., Miyake, S., Inawashiro, S., Kuroiwa, J., Sawada, Y.: Long-term memory of temporal patterns in a hippocampus-cortex model. Technical Report of IEICE NLP2000-18, 25–32 (2000) (in Japanese)

    Google Scholar 

  8. Freeman, W.J.: Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Bio. Cybern. 56, 139–150 (1987)

    Article  Google Scholar 

  9. Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences 10, 161–195 (1987)

    Article  Google Scholar 

  10. Aihara, K.: Chaotic neural networks. Phys. Lett. A 144, 333–340 (1990)

    Article  MathSciNet  Google Scholar 

  11. Adachi, M., Aihara, K.: Associative dynamics in chaotic neural network. Neural Networks 10, 83–98 (1997)

    Article  Google Scholar 

  12. Obayashi, M., Watanabe, K., Kobayashi, K.: Chaotic neural networks with Radial Basis Functions and its application to memory search problem. Trans. IEE of Japan 120-C, 1441–1446 (2000) (in Japanese)

    Google Scholar 

  13. Obayashi, M., Yuda, K., Omiya, R., Kobayashi, K.: Associative memory and mutual information in a chaotic neural network introducing function typed synaptic weights. IEEJ Trans. EIS 123, 1631–1637 (2003) (in Japanese)

    Article  Google Scholar 

  14. Lee, R.S.T.: A transient-chaotic autoassociative network (TCAN) based on Lee Oscillators. IEEE Trans. on Neural Networks 15, 1228–1243 (2004)

    Article  Google Scholar 

  15. Wang, L.P., Li, S., Tian, F.Y., Fu, X.J.: A Noisy Chaotic Neural Network for Solving Combinatorial Optimization Problems: Stochastic Chaotic Simulated Annealing. IEEE Trans. on Sys., Man, Cybern., Part B - Cybern. 34, 2119–2125 (2004)

    Article  Google Scholar 

  16. Kuremoto, T., Eto, T., Obayashi, M., Kobayashi, K.: A Multi-layered Chaotic Neural Network for Associative Memory. In: Proc. of SICE Annual Conference 2005, Okayama (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuremoto, T., Eto, T., Kobayashi, K., Obayashi, M. (2005). A Chaotic Model of Hippocampus-Neocortex. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_56

Download citation

  • DOI: https://doi.org/10.1007/11539087_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28323-2

  • Online ISBN: 978-3-540-31853-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics