Nothing Special   »   [go: up one dir, main page]

Skip to main content

A General Criterion of Synchronization Stability in Ensembles of Coupled Systems and Its Application

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3610))

Included in the following conference series:

Abstract

Complete synchronization of N coupled systems with symmetric configurations is studied in this paper. The main idea of the synchronization stability criterion is based on stability analysis of zero solution of linearized dynamical systems. By rigorous theoretical analysis, a general synchronization stability criteria is derived for N coupled systems with the first state variable diffusive coupling. This criterion is convenient for us to explore the synchronization of a class of coupled dynamical systems. Finally, the famous Lorenz system and Hindmarsh-Rose(HR) neuron are used to test our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pecora, L.M., Carroll, T.L.: Driving systems with chaotic signals. Phys. Rev. A. 44, 2374–2381 (1991)

    Article  Google Scholar 

  2. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  3. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  4. Istvn, Z.K., Zhai, Y.M., Hudson, J.L.: Collective dynamics of chaotic chemical oscillators and the law of large numbers. Phys. Rev. Lett. 88, 238301-1 (2002)

    Article  Google Scholar 

  5. Hansel, D., Sompolinsky, H.: Synchronization and computation in a chaotic neural network. Phys. Rev. Lett. 68, 718–721 (1992)

    Article  Google Scholar 

  6. Shuai, J.W., Durand, D.M.: Phase synchronization in two coupled chaotic neurons. Phys. Lett. A. 264, 289–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wang, W., Perez, G., Hilda, A.: Dynamical behavior of the firings in a coupled neuronal system. Phys. Rev. E. 47, 2893–2896 (1993)

    Article  Google Scholar 

  8. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2113 (1998)

    Article  Google Scholar 

  9. Pecora, L.M., Carroll, T.L., Johnson, G., Mar, D., Fink, K.: Synchronization stability in coupled oscillator arrays: solution for arbitrary configurations. Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 273–290 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wang, X.F., Chen, G.R.: Synchronization in Scale-Free Dynamical Networks: Robustness and Fragility. IEEE Trans. Circuits Syst. I 49, 54–62 (2002)

    Article  Google Scholar 

  11. Lü, J.H., Zhou, T.S., Zhang, S.C.: Chaos synchronization between linearly coupled chaotic system. Chaos, Solitons & Fractals 14, 529–541 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wu, C.W., Chua, L.O.: Synchronization in a array of linearly coupled dynamical systems. IEEE Trans. Circuits Syst. I 42, 430–447 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A. 263, 341–346 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leonov, G., Bunin, A., Koksch, N.: Attractor localization of the Lorenz system. ZAMM 67, 649–656 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B. 221, 87–102 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, QY., Lu, QS., Wang, HX. (2005). A General Criterion of Synchronization Stability in Ensembles of Coupled Systems and Its Application. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_159

Download citation

  • DOI: https://doi.org/10.1007/11539087_159

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28323-2

  • Online ISBN: 978-3-540-31853-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics