Abstract
Complete synchronization of N coupled systems with symmetric configurations is studied in this paper. The main idea of the synchronization stability criterion is based on stability analysis of zero solution of linearized dynamical systems. By rigorous theoretical analysis, a general synchronization stability criteria is derived for N coupled systems with the first state variable diffusive coupling. This criterion is convenient for us to explore the synchronization of a class of coupled dynamical systems. Finally, the famous Lorenz system and Hindmarsh-Rose(HR) neuron are used to test our theoretical analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pecora, L.M., Carroll, T.L.: Driving systems with chaotic signals. Phys. Rev. A. 44, 2374–2381 (1991)
Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)
Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)
Istvn, Z.K., Zhai, Y.M., Hudson, J.L.: Collective dynamics of chaotic chemical oscillators and the law of large numbers. Phys. Rev. Lett. 88, 238301-1 (2002)
Hansel, D., Sompolinsky, H.: Synchronization and computation in a chaotic neural network. Phys. Rev. Lett. 68, 718–721 (1992)
Shuai, J.W., Durand, D.M.: Phase synchronization in two coupled chaotic neurons. Phys. Lett. A. 264, 289–297 (1999)
Wang, W., Perez, G., Hilda, A.: Dynamical behavior of the firings in a coupled neuronal system. Phys. Rev. E. 47, 2893–2896 (1993)
Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2113 (1998)
Pecora, L.M., Carroll, T.L., Johnson, G., Mar, D., Fink, K.: Synchronization stability in coupled oscillator arrays: solution for arbitrary configurations. Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 273–290 (2000)
Wang, X.F., Chen, G.R.: Synchronization in Scale-Free Dynamical Networks: Robustness and Fragility. IEEE Trans. Circuits Syst. I 49, 54–62 (2002)
Lü, J.H., Zhou, T.S., Zhang, S.C.: Chaos synchronization between linearly coupled chaotic system. Chaos, Solitons & Fractals 14, 529–541 (2002)
Wu, C.W., Chua, L.O.: Synchronization in a array of linearly coupled dynamical systems. IEEE Trans. Circuits Syst. I 42, 430–447 (1995)
Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A. 263, 341–346 (1999)
Leonov, G., Bunin, A., Koksch, N.: Attractor localization of the Lorenz system. ZAMM 67, 649–656 (1987)
Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B. 221, 87–102 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, QY., Lu, QS., Wang, HX. (2005). A General Criterion of Synchronization Stability in Ensembles of Coupled Systems and Its Application. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_159
Download citation
DOI: https://doi.org/10.1007/11539087_159
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28323-2
Online ISBN: 978-3-540-31853-8
eBook Packages: Computer ScienceComputer Science (R0)