Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robust Face Recognition from One Training Sample per Person

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3610))

Included in the following conference series:

Abstract

This paper proposes a Gabor-based PCA method using Whiten Cosine Similarity Measure (WCSM) for Face Recognition from One training Sample per Person. Gabor wavelet representation of face images first derives desirable features, which is robust to the variations due to illumination, facial expression changes. PCA is then employed to reduce the dimensionality of the Gabor features. Whiten Cosine Similarity Measure is finally proposed for classification to integrate the virtues of the whiten translation and the cosine similarity measure. The effectiveness and robustness of the proposed method are successfully tested on CAS-PEAL dataset using one training sample per person, which contains 6609 frontal images of 1040 subjects. The performance enhancement power of the Gabor-based PCA feature and WCSM is shown in term of comparative performance against PCA feature, Mahalanobis distance and Euclidean distance. In particular, the proposed method achieves much higher accuracy than the standard Eigenface technique in our large-scale experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wu, J., Zhou, Z.-H.: Face Recognition with One Training Image per Person. Pattern Recognition Letters 23(14), 1711–1719 (2002)

    Article  MATH  Google Scholar 

  2. Martinez, A.M.: Recognizing imprecisely localized partially occluded and expression variant faces from a single sample per class. IEEE Trans. PAMI 24(6), 748–763 (2002)

    Google Scholar 

  3. Huang, J., Yuen, P.C., Chen, W.-S., Lai, J.H.: Component-based LDA Method for Face Recognition with One Training Sample. In: Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures (AMFG 2003) (2003)

    Google Scholar 

  4. Chen, S., Lovell, B.C.: Illumination and Expression Invariant Face Recognition with One Sample Image. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004) (2004)

    Google Scholar 

  5. Gao, W., Cao, B., Shan, S., Zhang, X., Zhou, D.: The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations. technical report of JDL (2004), http://www.jdl.ac.cn/~peal/peal_tr.pdf

  6. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  7. Daugman, J.G.: Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters. J. Optical Soc. Am. A 2(1), 160–161, 169 (1985)

    Google Scholar 

  8. Wiskott, L., Fellous, J.-M., Krüger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE Trans. PAMI 19(7), 775–779 (1997)

    Google Scholar 

  9. Lyons, M.J., Budynek, J., Akamatsu, S.: Automatic Classification of Single Facial Images. IEEE Trans. PAMI 21(12), 1357–1362 (1999)

    Google Scholar 

  10. Liu, C., Wechsler, H.: Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Trans. Image Processing 11(4), 467–476 (2002)

    Article  Google Scholar 

  11. Liu, C.: Gabor-Based Kernel PCA with Fractional Power Polynomial Models for Face Recognition. IEEE Trans. PAMI 26(5), 572–581 (2004)

    Google Scholar 

  12. Belhumeur, N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. PAMI 19(7), 711–720 (1997)

    Google Scholar 

  13. Phillips, P.J., Wechsler, H., Rauss, P.: The FERET Database and Evaluation Procedure for Face-Recognition Algorithms. Image and Vision Computing 16(5), 295–306 (1998)

    Article  Google Scholar 

  14. Martinez, A.M., Benavente, R.: The AR-face database. CVC Technical Report 24 (1998)

    Google Scholar 

  15. Wang, X., Tang, X.: A Unified Framework for Subspace Face Recognition. IEEE Trans. PAMI 26(9), 1222–1228 (2004)

    MathSciNet  Google Scholar 

  16. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. PAMI 19(7), 696–710 (1997)

    Google Scholar 

  17. Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. PAMI 20(1), 39–51 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deng, W., Hu, J., Guo, J. (2005). Robust Face Recognition from One Training Sample per Person. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_122

Download citation

  • DOI: https://doi.org/10.1007/11539087_122

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28323-2

  • Online ISBN: 978-3-540-31853-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics