Abstract
We consider an extension of Lafont’s Interaction Nets, called Multiport Interaction Nets, and show that they are a model of concurrent computation by encoding the full π-calculus in them. We thus obtain a faithful graphical representation of the π-calculus in which every reduction step is decomposed in fully local graph-rewriting rules.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lafont, Y.: Interaction Nets. In: Conference Record of POPL 1990, pp. 95–108. ACM Press, New York (1990)
Milner, R.: Pi-nets: A graphical form of π-calculus. In: Sannella, D. (ed.) ESOP 1994. LNCS, vol. 788, pp. 26–42. Springer, Heidelberg (1994)
Parrow, J.: Interaction diagrams. Nordic Journal of Computing 2, 407–443 (1995); A previous version appeared in de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.): REX 1993. LNCS, vol. 803, pp. 477–508. Springer, Heidelberg (1994)
Fu, Y.: Reaction Graph. Journal of Computer Science and Technology 13, 510–530 (1998)
Laneve, C., Parrow, J., Victor, B.: Solo Diagrams. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 127–144. Springer, Heidelberg (2001)
Laneve, C., Victor, B.: Solos in Concert. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 513–523. Springer, Heidelberg (1999)
Beffara, E., Maurel, F.: Concurrent nets: a study of prefixing in process calculi. In: Proceedings of EXPRESS 2004. ENTCS, vol. 128, pp. 67–86. Elsevier, Amsterdam (2005)
Yoshida, N.: Graph Notation for Concurrent Combinators. In: Ito, T., Yonezawa, A. (eds.) TPPP 1994. LNCS, vol. 907, pp. 393–412. Springer, Heidelberg (1995)
Alexiev, V.: Non-deterministic Interaction Nets. Ph.D. Thesis, University of Alberta (1999)
Khalil, L.: Généralisation des Réseaux d’Interaction avec amb, l’agent de Mc-Carthy: propriétés et applications. Ph.D. Thesis, École Normale Supérieure de Paris (2003)
Lafont, Y.: Interaction combinators. Information and Computation 137, 69–101 (1997)
Sangiorgi, D., Walker, D.: The π-calculus — A Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)
Pierce, B., Turner, D.: Pict: A Programming Language Based on the Pi-Calculus. CSCI Technical Report 476, Indiana University (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mazza, D. (2005). Multiport Interaction Nets and Concurrency. In: Abadi, M., de Alfaro, L. (eds) CONCUR 2005 – Concurrency Theory. CONCUR 2005. Lecture Notes in Computer Science, vol 3653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539452_6
Download citation
DOI: https://doi.org/10.1007/11539452_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28309-6
Online ISBN: 978-3-540-31934-4
eBook Packages: Computer ScienceComputer Science (R0)