Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bisimulations Up-to for the Linear Time Branching Time Spectrum

  • Conference paper
CONCUR 2005 – Concurrency Theory (CONCUR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3653))

Included in the following conference series:

Abstract

Coinductive definitions of semantics based on bisimulations have rather pleasant properties and are simple to use. In order to get coinductive characterisations of those semantic equivalences that are weaker than strong bisimulation we use a variant of the bisimulation up-to technique in which we allow the use of a given preorder relation. We prove that under some technical conditions our bisimulations up-to characterise the kernel of the given preorder. It is remarkable that the adequate orientation of the ordering relation is crucial to get this result. As a corollary, we get nice coinductive characterisations of all the axiomatic semantic equivalences in Van Glabbeek’s spectrum. Although we first prove our results for finite processes, reasoning by induction, then we see, by using continuity arguments, that they are also valid for infinite (finitary) processes.

Partially supported by the projects TERMAS TIC2003-07848-C02-01, MIDAS TIC2003-01000, PAC-03-001 and MRTN-CT-2003-505121/TAROT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boreale, M., Gadducci, F.: Denotational testing semantics in coinductive form. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 279–289. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence. Formal Aspects of Computing 3, 1–21 (1992)

    Google Scholar 

  3. Cleaveland, R., Smolka, S.A.: Strategic directions in concurrency research. ACM Computing Surveys 28(4), 607–625 (1996)

    Article  Google Scholar 

  4. de Frutos-Escrig, D., Gregorio-Rodríguez, C.: Semantics equivalences defined with global bisimulations. Annual meeting of the IFIP Working Group 2.2, Bertinoro, Italy (September 2004)

    Google Scholar 

  5. de Frutos-Escrig, D., López, N., Núñez, M.: Global timed bisimulation: An introduction. In: Formal Methods for Protocol Engineering and Distributed Systems, FORTE XII / PSTV XIX, pp. 401–416. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  6. Gardiner, P.: Power simulation and its relation to traces and failures refinement. Theoretical Computer Science 309, 157–176 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum I: The Semantics of Concrete, Sequential Processes. In: Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  8. Jacobs, B.: Trace semantics for coalgebras. In: CMCS 2004: 7th International Workshop on Coalgebraic Methods in Computer Science. Electronic Notes in Theoretical Computer Science, vol. 106. Elsevier, Amsterdam (2004)

    Google Scholar 

  9. Jacobs, B., Hughes, J.: Simulations in coalgebra. In: CMCS 2003: 6th International Workshop on Coalgebraic Methods in Computer Science, Electronic Notes in Theoretical Computer Science, vol. 82. Elsevier, Amsterdam (2003)

    Google Scholar 

  10. Klin, B.: A coalgebraic approach to process equivalence and a coinductive principle for traces. In: CMCS 2004: 7th International Workshop on Coalgebraic Methods in Computer Science. Electronic Notes in Theoretial Computer, vol. 106. Springer, Heidelberg (1981)

    Google Scholar 

  11. Kučera, A., Mayr, R.: Why is simulation harder than bisimulation? In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 594–610. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Kucera, A., Mayr, R.: Simulation preorder over simple process algebra. Information and Computation 173(2), 184–198 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Klin, B., Sobocinski, P.: Syntactic formats for free. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 72–86. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  15. David, M.R.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  16. Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-19, Computer Science Department, Aarhus University (1981)

    Google Scholar 

  17. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of streams, automata, and power series. Theoretical Computer Science 308(1-3), 1–53 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sangiorgi, D.: On the bisimulation proof method. Journal of Mathematical Structures in Computer Science 8(5), 447–479 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sangiorgi, D., Milner, R.: The problem of “Weak Bisimulation up to”. In: Cleveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Frutos Escrig, D., Rodríguez, C.G. (2005). Bisimulations Up-to for the Linear Time Branching Time Spectrum. In: Abadi, M., de Alfaro, L. (eds) CONCUR 2005 – Concurrency Theory. CONCUR 2005. Lecture Notes in Computer Science, vol 3653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539452_23

Download citation

  • DOI: https://doi.org/10.1007/11539452_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28309-6

  • Online ISBN: 978-3-540-31934-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics