Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Learning Random DNF Formulas Under the Uniform Distribution

  • Conference paper
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX 2005, RANDOM 2005)

Abstract

We study the average-case learnability of DNF formulas in the model of learning from uniformly distributed random examples. We define a natural model of random monotone DNF formulas and give an efficient algorithm which with high probability can learn, for any fixed constant γ> 0, a random t-term monotone DNF for any t = O(n 2 − γ). We also define a model of random nonmonotone DNF and give an efficient algorithm which with high probability can learn a random t-term DNF for any t=O(n 3/2 − γ). These are the first known algorithms that can successfully learn a broad class of polynomial-size DNF in a reasonable average-case model of learning from random examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aizenstein, H., Pitt, L.: On the learnability of disjunctive normal form formulas. Machine Learning 19, 183–208 (1995)

    MATH  Google Scholar 

  2. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)

    Google Scholar 

  3. Angluin, D., Kharitonov, M.: When won’t membership queries help? J. Comput. & Syst. Sci. 50, 336–355 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blum, A.: Learning a function of r relevant variables (open problem). In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 731–733. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Blum, A.: Machine learning: a tour through some favorite results, directions, and open problems. FOCS 2003 tutorial slides (2003), available at http://www-2.cs.cmu.edu/~avrim/Talks/FOCS03/tutorial.ppt

  6. Blum, A., Burch, C., Langford, J.: On learning monotone boolean functions. In: Proc. 39th FOCS, pp. 408–415 (1998)

    Google Scholar 

  7. Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., Rudich, S.: Weakly learning DNF and characterizing statistical query learning using Fourier analysis. In: Proc. 26th STOC, pp. 253–262 (1994)

    Google Scholar 

  8. Bollobas, B.: Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  9. Golea, M., Marchand, M., Hancock, T.: On learning μ-perceptron networks on the uniform distribution. Neural Networks 9, 67–82 (1994)

    Article  Google Scholar 

  10. Hancock, T.: Learning kμ decision trees on the uniform distribution. In: Proc. Sixth COLT, pp. 352–360 (1993)

    Google Scholar 

  11. Jackson, J.: An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. J. Comput. & Syst. Sci. 55, 414–440 (1997)

    Article  MATH  Google Scholar 

  12. Jackson, J., Klivans, A., Servedio, R.: Learnability beyond ACo. In: Proc. 34th STOC (2002)

    Google Scholar 

  13. Jackson, J., Servedio, R.: Learning random log-depth decision trees under the uniform distribution. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 610–624. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Jackson, J., Tamon, C.: Fourier analysis in machine learning. ICML/COLT 1997 tutorial slides (1997), available at http://learningtheory.org/resources.html

  15. Kearns, M.: Efficient noise-tolerant learning from statistical queries. Journal of the ACM 45(6), 983–1006 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kearns, M., Li, M., Pitt, L., Valiant, L.: Recent results on Boolean concept learning. In: Proc. Fourth Int. Workshop on Mach. Learning, pp. 337–352 (1987)

    Google Scholar 

  17. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  18. Klivans, A., O’Donnell, R., Servedio, R.: Learning intersections and thresholds of halfspaces. In: Proc. 43rd FOCS, pp. 177–186 (2002)

    Google Scholar 

  19. Kucera, L., Marchetti-Spaccamela, A., Protassi, M.: On learning monotone DNF formulae under uniform distributions. Inform. and Comput. 110, 84–95 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. McDiarmid, C.: On the method of bounded differences. In: Surveys in Combinatoric 1989. London Mathematical Society Lecture Notes, pp. 148–188 (1989)

    Google Scholar 

  21. Servedio, R.: On learning monotone DNF under product distributions. In: Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 473–489. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Valiant, L.: A theory of the learnable. CACM 27(11), 1134–1142 (1984)

    MATH  Google Scholar 

  23. Verbeurgt, K.: Learning DNF under the uniform distribution in quasi-polynomial time. In: Proc. Third COLT, pp. 314–326 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jackson, J.C., Servedio, R.A. (2005). On Learning Random DNF Formulas Under the Uniform Distribution. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_29

Download citation

  • DOI: https://doi.org/10.1007/11538462_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28239-6

  • Online ISBN: 978-3-540-31874-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics