Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

We consider monotonicity testing of functions f:[n]d→ {0,1}, in the property testing framework of Rubinfeld and Sudan [23] and Goldreich, Goldwasser and Ron [14]. Specifically, we consider the framework of distribution-free property testing, where the distance between functions is measured with respect to a fixed but unknown distribution D on the domain and the testing algorithms have an oracle access to random sampling from the domain according to this distribution D. We show that, though in the uniform distribution case, testing of boolean functions defined over the boolean hypercube can be done using query complexity that is polynomial in \(\frac{1}{\epsilon}\) and in the dimension d, in the distribution-free setting such testing requires a number of queries that is exponential in d. Therefore, in the high-dimensional case (in oppose to the low-dimensional case), the gap between the query complexity for the uniform and the distribution-free settings is exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs. In: FOCS 1999, pp. 656–666 (1999)

    Google Scholar 

  2. Batu, T., Rubinfeld, R., White, P.: Fast approximation PCPs for multidimensional bin-packing problems. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 245–256. Springer, Heidelberg (1999)

    Google Scholar 

  3. Blum, M., Luby, M., Rubinfeld, R.: Self testing/correcting with applications to numerical problems. Journal of Computer and System Science 47, 549–595 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-colorability in bounded-degree graphs. In: FOCS 2002, pp. 93–102 (2002)

    Google Scholar 

  5. Czumaj, A., Sohler, C.: Testing hypergraph coloring. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 493–505. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Improved testing algorithms for monotonicity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 97–108. Springer, Heidelberg (1999)

    Google Scholar 

  7. Ergün, E., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spotcheckers. Journal of Computing and System Science 60, 717–751 (2000) (a preliminary version appeared in STOC 1998)

    Article  Google Scholar 

  8. Fischer, E.: On the strength of comparisons in property testing (available at ECCC 8(8) (2001) (manuscript)

    Google Scholar 

  9. Fischer, E.: The art of uninformed decisions: A primer to property testing. The Computational Complexity Column of The bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)

    MATH  Google Scholar 

  10. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorodnitsky, A.: Monotonicity testing over general poset domains. In: STOC 2002, pp. 474–483 (2002)

    Google Scholar 

  11. Fischer, E., Newman, I.: Testing of matrix properties. In: STOC 2001, pp. 286– 295 (2001)

    Google Scholar 

  12. Goldreich, O.: Combinatorical property testing – a survey. In: Randomized Methods in Algorithms Design, AMS-DIMACS, pp. 45–61 (1998)

    Google Scholar 

  13. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing Monotonicity. Combinatorica 20(3), 301–337 (2000) (a preliminary version appeared in FOCS 1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM 45(4), 653–750 (1998) (a preliminary version appeared in FOCS 1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. In: STOC 1997, pp. 406–415 (1997)

    Google Scholar 

  16. Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties. In: FOCS 2001, pp. 302–317 (2001)

    Google Scholar 

  17. Halevy, S., Kushilevitz, E.: Distribution-free property testing. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 341–353. Springer, Heidelberg (2003)

    Google Scholar 

  18. Halevy, S., Kushilevitz, E.: Testing monotonicity over graph products. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 721–732. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Halevy, S., Kushilevitz, E.: Distribution-free connectivity testing. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 393–404. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in general graphs. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 341–353. Springer, Heidelberg (2003)

    Google Scholar 

  21. Kearns, M.J., Vzirani, U.V.: An introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  22. Ron, D.: Property testing (a tutorial). In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolin, J.D.P. (eds.) Handbook of Randomized Computing. Kluwer Press, Dordrecht (2001)

    Google Scholar 

  23. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM Journal of Computing 25(2), 252–271 (1996) (first appeared as a technical report, Cornell University, 1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halevy, S., Kushilevitz, E. (2005). A Lower Bound for Distribution-Free Monotonicity Testing. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_28

Download citation

  • DOI: https://doi.org/10.1007/11538462_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28239-6

  • Online ISBN: 978-3-540-31874-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics