Abstract
We consider monotonicity testing of functions f:[n]d→ {0,1}, in the property testing framework of Rubinfeld and Sudan [23] and Goldreich, Goldwasser and Ron [14]. Specifically, we consider the framework of distribution-free property testing, where the distance between functions is measured with respect to a fixed but unknown distribution D on the domain and the testing algorithms have an oracle access to random sampling from the domain according to this distribution D. We show that, though in the uniform distribution case, testing of boolean functions defined over the boolean hypercube can be done using query complexity that is polynomial in \(\frac{1}{\epsilon}\) and in the dimension d, in the distribution-free setting such testing requires a number of queries that is exponential in d. Therefore, in the high-dimensional case (in oppose to the low-dimensional case), the gap between the query complexity for the uniform and the distribution-free settings is exponential.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs. In: FOCS 1999, pp. 656–666 (1999)
Batu, T., Rubinfeld, R., White, P.: Fast approximation PCPs for multidimensional bin-packing problems. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 245–256. Springer, Heidelberg (1999)
Blum, M., Luby, M., Rubinfeld, R.: Self testing/correcting with applications to numerical problems. Journal of Computer and System Science 47, 549–595 (1993)
Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-colorability in bounded-degree graphs. In: FOCS 2002, pp. 93–102 (2002)
Czumaj, A., Sohler, C.: Testing hypergraph coloring. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 493–505. Springer, Heidelberg (2001)
Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Improved testing algorithms for monotonicity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 97–108. Springer, Heidelberg (1999)
Ergün, E., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spotcheckers. Journal of Computing and System Science 60, 717–751 (2000) (a preliminary version appeared in STOC 1998)
Fischer, E.: On the strength of comparisons in property testing (available at ECCC 8(8) (2001) (manuscript)
Fischer, E.: The art of uninformed decisions: A primer to property testing. The Computational Complexity Column of The bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)
Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorodnitsky, A.: Monotonicity testing over general poset domains. In: STOC 2002, pp. 474–483 (2002)
Fischer, E., Newman, I.: Testing of matrix properties. In: STOC 2001, pp. 286– 295 (2001)
Goldreich, O.: Combinatorical property testing – a survey. In: Randomized Methods in Algorithms Design, AMS-DIMACS, pp. 45–61 (1998)
Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing Monotonicity. Combinatorica 20(3), 301–337 (2000) (a preliminary version appeared in FOCS 1998)
Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM 45(4), 653–750 (1998) (a preliminary version appeared in FOCS 1996)
Goldreich, O., Ron, D.: Property testing in bounded degree graphs. In: STOC 1997, pp. 406–415 (1997)
Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties. In: FOCS 2001, pp. 302–317 (2001)
Halevy, S., Kushilevitz, E.: Distribution-free property testing. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 341–353. Springer, Heidelberg (2003)
Halevy, S., Kushilevitz, E.: Testing monotonicity over graph products. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 721–732. Springer, Heidelberg (2004)
Halevy, S., Kushilevitz, E.: Distribution-free connectivity testing. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 393–404. Springer, Heidelberg (2004)
Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in general graphs. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 341–353. Springer, Heidelberg (2003)
Kearns, M.J., Vzirani, U.V.: An introduction to Computational Learning Theory. MIT Press, Cambridge (1994)
Ron, D.: Property testing (a tutorial). In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolin, J.D.P. (eds.) Handbook of Randomized Computing. Kluwer Press, Dordrecht (2001)
Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM Journal of Computing 25(2), 252–271 (1996) (first appeared as a technical report, Cornell University, 1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Halevy, S., Kushilevitz, E. (2005). A Lower Bound for Distribution-Free Monotonicity Testing. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_28
Download citation
DOI: https://doi.org/10.1007/11538462_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28239-6
Online ISBN: 978-3-540-31874-3
eBook Packages: Computer ScienceComputer Science (R0)