Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

A coloring of a tree is convex if the vertices that pertain to any color induce a connected subtree; a partial coloring (which assigns colors to some of the vertices) is convex if it can be completed to a convex (total) coloring. Convex coloring of trees arises in areas such as phylogenetics, linguistics, etc. e.g., a perfect phylogenetic tree is one in which the states of each character induce a convex coloring of the tree. Research on perfect phylogeny is usually focused on finding a tree so that few predetermined partial colorings of its vertices are convex.

When a coloring of a tree is not convex, it is desirable to know “how far” it is from a convex one. In [MS05], a natural measure for this distance, called the recoloring distance was defined: the minimal number of color changes at the vertices needed to make the coloring convex. This can be viewed as minimizing the number of “exceptional vertices” w.r.t. to a closest convex coloring. The problem was proved to be NP-hard even for colored strings.

In this paper we continue the work of [MS05], and present a 2-approximation algorithm of convex recoloring of strings whose running time O(cn), where c is the number of colors and n is the size of the input, and an O(cn 2) 3-approximation algorithm for convex recoloring of trees.

A preliminary version of the results in this paper appeared in [MS03].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawala, R., Fernandez-Baca, D.: Simple algorithms for perfect phylogeny and triangulating colored graphs. International Journal of Foundations of Computer Science 7(1), 11–21 (1996)

    Article  Google Scholar 

  2. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. on Discrete Mathematics 12, 289–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben-Dor, A., Friedman, N., Yakhini, Z.: Class discovery in gene expression data. In: RECOMB, pp. 31–38 (2001)

    Google Scholar 

  4. Bittner, M., et al.: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406(6795), 536–540 (2000)

    Article  Google Scholar 

  5. Bodlaender, H.L., Fellows, M.R., Warnow, T.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992)

    Google Scholar 

  6. Bar-Yehuda, R.: One for the price of two: A unified approach for approximating covering problems. Algorithmica 27, 131–144 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. Annals of Discrete Mathematics 25, 27–46 (1985)

    MathSciNet  Google Scholar 

  8. Dress, A., Steel, M.A.: Convex tree realizations of partitions. Applied Mathematics Letters 5(3), 3–6 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fernández-Baca, D., Lagergren, J.: A polynomial-time algorithm for near-perfect phylogeny. SIAM Journal on Computing 32(5), 1115–1127 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fitch, W.M.: A non-sequential method for constructing trees and hierarchical classifications. Journal of Molecular Evolution 18(1), 30–37 (1981)

    Article  MathSciNet  Google Scholar 

  11. Goldberg, L.A., Goldberg, P.W., Phillips, C.A.: Minimizing phylogenetic number to find good evolutionary trees. Discrete Applied Mathematics 71, 111–136 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  13. Gusfield, D.: Efficient algorithms for inferring evolutionary history. Networks 21, 19–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problem. PWS Publishing Company (1997)

    Google Scholar 

  15. Hirsh, A., Tsolaki, A., DeRiemer, K., Feldman, M., Small, P.: From the cover: Stable association between strains of mycobacterium tuberculosis and their human host populations. PNAS 101, 4871–4876 (2004)

    Article  Google Scholar 

  16. Kannan, S., Warnow, T.: Inferring evolutionary history from DNA sequences. SIAM J. Computing 23(3), 713–737 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of perfect phylogenies when the number of character states is fixed. SIAM J. Computing 26(6), 1749–1763 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moran, S., Snir, S.: Convex recoloring of strings and trees. Technical Report CS-2003-13, Technion (November 2003)

    Google Scholar 

  19. Moran, S., Snir, S.: Convex recoloring of strings and trees: Definitions, hardness results and algorithms. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 218–232. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Paz, A., Moran, S.: Non deterministic polynomial optimization probems and their approximabilty. ICALP 1977 15, 251–277 (1981); Abridged version: Proc. of the 4th ICALP conference (1977)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sankoff, D.: Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics 28, 35–42 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  22. Semple, C., Steel, M.A.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  23. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9(1), 91–116 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moran, S., Snir, S. (2005). Efficient Approximation of Convex Recolorings. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_17

Download citation

  • DOI: https://doi.org/10.1007/11538462_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28239-6

  • Online ISBN: 978-3-540-31874-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics