Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Expressiveness of Asynchronous Cellular Automata

  • Conference paper
Fundamentals of Computation Theory (FCT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Included in the following conference series:

Abstract

We show that a slightly extended version of asynchronous cellular automata, relative to any class of pomsets and dags without autoconcurrency, has the same expressive power as the existential fragment of monadic second-order logic. In doing so, we provide a framework that unifies many approaches to modeling distributed systems such as the models of asynchronous trace automata and communicating finite-state machines. As a byproduct, we exhibit classes of pomsets and dags for which the radius of graph acceptors can be reduced to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: Proceedings of LICS 1993. IEEE Computer Society Press, Los Alamitos (1993)

    Google Scholar 

  2. Bollig, B., Leucker, M.: Message-Passing Automata are expressively equivalent to EMSO Logic. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 146–160. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the ACM 30(2) (1983)

    Google Scholar 

  4. Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to verify than perfect channels. Information and Computation 124(1) (1996)

    Google Scholar 

  5. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)

    Google Scholar 

  6. Droste, M., Gastin, P., Kuske, D.: Asynchronous cellular automata for pomsets. Theoretical Computer Science 247(1-2) (2000)

    Google Scholar 

  7. Finkel, A.: Decidability of the termination problem for completely specified protocols. Distributed Computing 7(3) (1994)

    Google Scholar 

  8. Genest, B., Muscholl, A., Kuske, D.: A Kleene theorem for a class of communicating automata with effective algorithms. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 30–48. Springer, Heidelberg (2004)

    Google Scholar 

  9. Hanf, W.P.: Model-theoretic methods in the study of elementary logic. In: The Theory of Models. North-Holland, Amsterdam (1965)

    Google Scholar 

  10. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Thiagarajan, P.S.: Regular collections of message sequence charts. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, p. 405. Springer, Heidelberg (2000)

    Google Scholar 

  11. Kuske, D.: Emptiness is decidable for asynchronous cellular machines. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 536. Springer, Heidelberg (2000)

    Google Scholar 

  12. Matz, O., Schweikardt, N., Thomas, W.: The monadic quantifier alternation hierarchy over grids and graphs. Information and Computation 179(2) (2002)

    Google Scholar 

  13. Potthoff, A., Seibert, S., Thomas, W.: Nondeterminism versus determinism of finite automata over directed acyclic graphs. Bulletin of the Belgian Mathematical Society 1 (1994)

    Google Scholar 

  14. Thomas, W.: On Logics, Tilings, and Automata. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510. Springer, Heidelberg (1991)

    Google Scholar 

  15. Thomas, W.: Elements of an automata theory over partial orders. In: Proceedings of POMIV 1996. DIMACS, vol. 29, AMS (1996)

    Google Scholar 

  16. Thomas, W.: Automata theory on trees and partial orders. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  17. Wiesław Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique Théorique et Applications, 21 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bollig, B. (2005). On the Expressiveness of Asynchronous Cellular Automata. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_46

Download citation

  • DOI: https://doi.org/10.1007/11537311_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics