Nothing Special   »   [go: up one dir, main page]

Skip to main content

Shrinking Multi-pushdown Automata

  • Conference paper
Fundamentals of Computation Theory (FCT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Included in the following conference series:

Abstract

The shrinking two-pushdown automaton is known to charactize the class of growing context-sensitive languages, while its deterministic variant accepts the Church-Rosser languages. Here we study the expressive power of shrinking pushdown automata with more than two pushdown stores, obtaining a close correspondence to linear time-bounded multi-tape Turing machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aanderaa, S.O.: On k-tape versus (k−1)-tape real time computation. In: Karp, R.M. (ed.) Complexity of Computation, SIAM-AMS Symp. in Appl. Math., vol. 7, pp. 75–96. American Math. Society, Providence (1974)

    Google Scholar 

  2. Book, R.V.: Time-bounded grammars and their languages. J. Comput. System Sci. 5, 397–429 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  3. Book, R.V., Greibach, S.A.: Quasi-realtime languages. Math. Systems Theory 4, 97–111 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bordihn, H., Holzer, M., Kutrib, M.: Input reversals and iterated pushdown automata: A new characterization of khabbaz geometric hierarchy of languages. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 102–113. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Buntrock, G.: Wachsende kontext-sensitive Sprachen. Habilitationsschrift, Fakultät für Mathematik und Informatik, Universität Würzburg (1996)

    Google Scholar 

  6. Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser languages. Inform. and Comput. 141, 1–36 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars is polynomial. J. Comput. System Sci. 33, 456–472 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Holzer, M., Kutrib, M.: Flip-Pushdown Automata: k + 1 Pushdown Reversals Are Better Than k. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 490–501. Springer, Heidelberg (2003)

    Google Scholar 

  9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  10. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. J. Assoc. Comput. Mach. 35, 324–344 (1988)

    MATH  MathSciNet  Google Scholar 

  11. Niemann, G., Otto, F.: The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages. FOSSACS 1998 197, 1–21 (2005); An extended abstract appeared in Nivat, M. (ed.) FoSSaCS 1998. LNCS, vol. 1378, pp. 243–257. Springer, Berlin (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Otto, F., Moriya, E.: Shrinking alternating two-pushdown automata. IEICE Trans. on Inform. and Systems E87-D, 959–966 (2004)

    Google Scholar 

  13. Paul, W.J.: On-line simulation of k + 1 tapes by k tapes requires nonlinear time. Inform. and Control 53, 1–8 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Paul, W.J., Prauß, E., Reischuk, R.: On alternation. Acta Inform. 14, 243–255 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Paul, W.J., Pippenger, N., Szemerédi, E., Trotter, W.T.: On determinism versus non-determinism and related problems. In: 24th Annual Symposium on Foundations of Computer Science, Proc., pp. 429–438. IEEE Computer Society, Los Angeles (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzer, M., Otto, F. (2005). Shrinking Multi-pushdown Automata. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_27

Download citation

  • DOI: https://doi.org/10.1007/11537311_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics