Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Faster and Simpler 2-Approximation Algorithm for Block Sorting

  • Conference paper
Fundamentals of Computation Theory (FCT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Included in the following conference series:

Abstract

Block sorting is used in connection with optical character recognition (OCR). Recent work has focused on finding good strategies which perform well in practice. Block sorting is \(\mathcal{NP}\)-hard and all of the previously known heuristics lack proof of any approximation ratio. We present here an approximation algorithm for the block sorting problem with approximation ratio of 2 and run time O(n 2). The approximation algorithm is based on finding an optimal sequence of absolute block deletions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bafna, V., Pevzner, P.A.: Sorting by transposition. SIAM Journal on Discrete Mathematics 11, 224–240 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM Journal on Computing 25, 272–289 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bein, W.W., Larmore, L.L., Latifi, S., Sudborough, I.H.: Block sorting is hard. International Journal of Foundations of Computer Science 14(3), 425–437 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caprara, A.: Sorting by reversals is difficult. In: Proceedings 1st Conference on Computational Molecular Biology, pp. 75–83. ACM, New York (1997)

    Google Scholar 

  5. Gates, W.H., Papadimitriou, C.H.: Bounds for sorting by prefix reversal. Discrete Mathematics 27, 47–57 (1979)

    Article  MathSciNet  Google Scholar 

  6. Gobi, R., Latifi, S., Bein, W.W.: Adaptive sorting algorithms for evaluation of automatic zoning employed in OCR devices. In: Proceedings of the 2000 International Conference on Imaging Science, Systems, and Technology, pp. 253–259. CSREA Press (2000)

    Google Scholar 

  7. Heath, L.S., Vergara, J.P.C.: Sorting by bounded block-moves. Discrete Applied Mathematics 88, 181–206 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Heath, L.S., Vergara, J.P.C.: Sorting by short block-moves. Algorithmics 28(3), 323–354 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Heydari, H., Sudborough, I.H.: On the diameter of the pancake network. Journal of Algorithms 25(1), 67–94 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kanai, J., Rice, S.V., Nartker, T.A.: Automatic evaluation of OCR zoning. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(1), 86–90 (1995)

    Article  Google Scholar 

  11. Latifi, S.: How can permutations be used in the evaluation of automatic zoning evaluation. In: ICEE 1993. Amir Kabir University (1993)

    Google Scholar 

  12. Mahajan, M., Rama, R., Raman, V., Vijayakumar, S.: Approximate block sorting. International Journal of Foundations of Computer Science (to appear)

    Google Scholar 

  13. Mahajan, M., Rama, R., Vijayakumar, S.: Merging and sorting by strip moves. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 314–325. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bein, W.W., Larmore, L.L., Morales, L., Sudborough, I.H. (2005). A Faster and Simpler 2-Approximation Algorithm for Block Sorting. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_11

Download citation

  • DOI: https://doi.org/10.1007/11537311_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics