Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modelling Surface Normal Distribution Using the Azimuthal Equidistant Projection

  • Conference paper
Mathematics of Surfaces XI

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3604))

  • 1051 Accesses

Abstract

This paper describes how surface shape, and in particular facial shape, can be modeled using a statistical model that captures variations in surface normal direction. To construct this model we make use of the azimuthal equidistant projection to map surface normals from the unit sphere to points on a local tangent plane. The variations in surface normal direction are captured using the covariance matrix for the projected point positions. This allows us to model variations in surface shape using a standard point distribution model. We show how this model can be trained using surface normal data acquired from range images. We fit the model to intensity data using constraints on the surface normal direction provided by Lambert’s law. We demonstrate the utility of the method on the recovery of 3D surface shape from 2D images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, R., Tsai, P.S., Cryer, J.E., Shah, M.: Shape-from-shading: a survey. IEEE Trans. PAMI 21, 690–706 (1999)

    Google Scholar 

  2. Gregory, R.L.: Knowledge in perception and illusion. Phil. Trans. R. Soc. Lond. B 352, 1121–1128 (1997)

    Article  Google Scholar 

  3. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. PAMI 23, 643–660 (2001)

    Google Scholar 

  4. Atick, J.J., Griffin, P.A., Redlich, A.N.: Statistical approach to SFS: Reconstruction of 3D face surfaces from single 2D images. Neural Comp. 8, 1321–1340 (1996)

    Article  Google Scholar 

  5. Zhao, W.Y., Chellappa, R.: Illumination-insensitive face recognition using symmetric SFS. In: Proc. CVPR (2000)

    Google Scholar 

  6. Samaras, D., Metaxas, D.: Illumination constraints in deformable models for shape and light direction estimation. IEEE Trans. PAMI 25, 247–264 (2003)

    Google Scholar 

  7. Castelán, M., Hancock, E.R.: Acquiring height maps of faces from a single image. In: Proc. 3DPVT, pp. 183–190 (2004)

    Google Scholar 

  8. Prados, E., Faugeras, O.: A rigorous and realistic shape from shading method and some of its applications. Technical Report RR-5133, INRIA (2004)

    Google Scholar 

  9. Heap, T., Hogg, D.: Extending the point distribution model using polar coordinates. Image and Vision Computing 14, 589–599 (1996)

    Article  Google Scholar 

  10. Snyder, J.P.: Map Projections–A Working Manual, U.S.G.S. Professional Paper 1395. United States Government Printing Office, Washington D.C (1987)

    Google Scholar 

  11. Cootes, T.F., Taylor, C., Cooper, D., Graham, J.: Training models of shape from sets of examples. In: Proc. BMVC, pp. 9–18 (1992)

    Google Scholar 

  12. Worthington, P.L., Hancock, E.R.: New constraints on data-closeness and needle map consistency for shape-from-shading. IEEE Trans. PAMI 21, 1250–1267 (1999)

    Google Scholar 

  13. Worthington, P.L., Hancock, E.R.: Surface topography using shape-from-shading. Pattern Recognition 34, 823–840 (2001)

    Article  MATH  Google Scholar 

  14. Sirovich, L.: Turbulence and the dynamics of coherent structures. Quart. Applied Mathematics XLV, 561–590 (1987)

    MathSciNet  Google Scholar 

  15. Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. PAMI 10, 439–451 (1988)

    MATH  Google Scholar 

  16. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE Conf. CVPR, pp. 586–591 (1991)

    Google Scholar 

  17. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith, W.A.P., Hancock, E.R. (2005). Modelling Surface Normal Distribution Using the Azimuthal Equidistant Projection. In: Martin, R., Bez, H., Sabin, M. (eds) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol 3604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537908_23

Download citation

  • DOI: https://doi.org/10.1007/11537908_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28225-9

  • Online ISBN: 978-3-540-31835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics